k-truss是一种子图结构,用于在图中寻找凝聚子图。类似的结构还有k-core
支持度(support):图的一条边e包含在k个三角形中,则support(e) = k
k-truss:图G的极大子图g。在g中,每条边的support >= k-2。
(也可以简化定义为support >= k)
很明显,对于两个正整数 k 1 > k 2 k_1\gt k_2 k1>k2, k 1 k_1 k1-truss ⊆ k 2 \subseteq k_2 ⊆k2–truss
truss decomposition:为了计算一个图中所有的k-truss,可以计算每条边的turssness。边e所在的最大k值的k-truss,trussness(e) = k。k-truss是所有trussness(e) >= k的边的诱导子图。
代码:
#include <stdio.h>
#include <vector>
#include <map>
#include <queue>
using namespace std;
vector<int> *g;
map<pair<int, int>, int> edge;
int n, m; //最大顶点为n,边的数量为m
vector<int> sup, truss; //边的支持度和truss
vector<pair<int, int>> edge2;
void BuildGraph(char* file);
void truss_decomposition();
int sup_calculation();
vector<int> k_truss(int K);
void BuildGraph(char* file) //建立图
{
FILE* f = fopen(file, "r");
int a, b;
//计算最大顶点编号为n
while (fscanf(f, "%d %d", &a, &b) != EOF)
{
if (a > n) n = a;
if (b > n) n = b;
++m;
}
rewind(f);
g = new vector<int>[n + 1];
edge2.resize(m);
m = 0;
//int eid = 0;
while (fscanf(f, "%d %d", &a, &b) != EOF)
{
if (a == b) continue; //忽略指向自己的边
if (a < b) //令a>b
{
int t = a;
a = b;
b = t;
}
if (edge.find(pair<int, int>(a, b)) == edge.end()) //这条边目前不存在,避免重边
{
g[a].push_back(b);
g[b].push_back(a);
edge2[m] = pair<int, int>(a, b);
edge[pair<int, int>(a, b)] = m;
edge[pair<int, int>(b, a)] = m++;
}
}
truss.resize(m);
sup.resize(m);
fclose(f);
}
void truss_decomposition()
{
int maxsup = sup_calculation();
vector<int> *bin = new vector<int>[maxsup + 1];
for (int i = 0; i < m; ++i)
bin[sup[i]].push_back(i);
vector<bool> del(m, false);
for (int i = 0; i <= maxsup; ++i)
{
for (int j = 0; j < bin[i].size(); ++j)
{
int eid = bin[i][j];
if (del[eid] == true) continue;
truss[eid] = i + 2;
del[eid] = true;
int x = edge2[eid].first;
int y = edge2[eid].second;
if (g[x].size() < g[y].size())
{
int t = x;
x = y;
y = t;
}
for (int k = 0; k < g[y].size(); ++k)
{
int w = g[y][k];
int e = edge[pair<int, int>(y, w)];
if (del[e] == true) continue;
if (edge.find(pair<int, int>(x, w)) != edge.end()) //xyw构成三角形
{
e = edge[pair<int, int>(x, w)];
if (del[e] == true) continue;
if (sup[e] > i)
{
sup[e]--;
bin[sup[e]].push_back(e);
}
e = edge[pair<int, int>(y, w)];
if (sup[e] > i)
{
sup[e]--;
bin[sup[e]].push_back(e);
}
}
}
}
}
delete[] bin;
}
vector<int> k_truss(int K) //计算指定k的k-truss
{
queue<int> q;
vector<int> res;
vector<bool> del(m, false);
int maxsup = sup_calculation();
for (int i = 0; i < m; ++i)
{
if (sup[i] < K - 2)
q.push(i);
}
while (q.empty() == false)
{
int eid = q.front();
q.pop();
if (del[eid] == true) continue;
del[eid] = true;
int x = edge2[eid].first;
int y = edge2[eid].second;
if (g[x].size() < g[y].size())
{
int t = x;
x = y;
y = t;
}
for (int k = 0; k < g[y].size(); ++k)
{
int w = g[y][k];
int e = edge[pair<int, int>(y, w)];
if (del[e] == true) continue;
if (edge.find(pair<int, int>(x, w)) != edge.end()) //xyw构成三角形
{
e = edge[pair<int, int>(x, w)];
if (del[e] == true) continue;
sup[e]--;
if (sup[e] < K - 2)
q.push(e);
e = edge[pair<int, int>(y, w)];
sup[e]--;
if (sup[e] < K - 2)
q.push(e);
}
}
}
for (int i = 0; i < m; ++i)
if (del[i] == false)
res.push_back(i);
return res;
}
int sup_calculation()
{
int maxsup = 0;
for (int i = 0; i <= n; ++i)
{
for (int j = 0; j < g[i].size(); ++j)
{
int w = g[i][j]; //i的相邻顶点
if (i > w)
{
int eid = edge[pair<int, int>(i, w)]; //边(i,w)
sup[eid] = 0;
//degree(u)>degree(v)
int u = g[i].size() > g[w].size() ? i : w;
int v = g[i].size() > g[w].size() ? w : i;
for (int k = 0; k < g[v].size(); ++k) //w的相邻顶点
{
if (edge.find(pair<int, int>(u, g[v][k])) != edge.end())
sup[eid]++;
}
if (sup[eid] > maxsup)
maxsup = sup[eid];
}
}
}
return maxsup;
}