Given a non-negative integer N
, find the largest number that is less than or equal to N
with monotone increasing digits.
(Recall that an integer has monotone increasing digits if and only if each pair of adjacent digits x
and y
satisfy x <= y
.)
Example 1:
Input: N = 10 Output: 9
Example 2:
Input: N = 1234 Output: 1234
Example 3:
Input: N = 332 Output: 299
Note: N
is an integer in the range [0, 10^9]
.
Approach #1: C++. [recursive]
class Solution {
public:
int monotoneIncreasingDigits(int N) {
stack<int> temp;
while (N) {
int lastNum = N % 10;
N /= 10;
temp.push(lastNum);
}
int curNum = temp.top();
temp.pop();
int ans = 0;
while (!temp.empty()) {
if (curNum <= temp.top()) {
ans = ans * 10 + curNum;
curNum = temp.top();
temp.pop();
} else {
ans = ans * 10 + curNum - 1;
for (int i = 0; i < temp.size(); ++i)
ans = ans * 10 + 9;
if (judge(ans))
return ans;
else return monotoneIncreasingDigits(ans);
}
}
ans = ans * 10 + curNum;
return ans;
}
bool judge(int N) {
int lastNum = N % 10;
N /= 10;
while (N) {
int curNum = N % 10;
N /= 10;
if (curNum > lastNum) return false;
lastNum = curNum;
}
return true;
}
};
Approach #2: Java. [Truncate After Cliff]
class Solution {
public int monotoneIncreasingDigits(int N) {
char[] S = String.valueOf(N).toCharArray();
int i = 1;
while (i < S.length && S[i-1] <= S[i]) i++;
while (0 < i && i < S.length && S[i-1] > S[i]) S[--i]--;
for (int j = i+1; j < S.length; ++j) S[j] = '9';
return Integer.parseInt(String.valueOf(S));
}
}