问题描述:
Given a non-negative integer N
, find the largest number that is less than or equal to N
with monotone increasing digits.
(Recall that an integer has monotone increasing digits if and only if each pair of adjacent digits x
and y
satisfy x <= y
.)
示例:
Input: N = 10 Output: 9
Input: N = 1234 Output: 1234
Input: N = 332 Output: 299
Note: N
is an integer in the range [0, 10^9]
.
问题分析:
从左到右找到相邻两个数字中digit[i] > digit[i+1]的索引i,对于i+1到digits.size()的数字全部置为9;
对于j在i到0之间依次找到digits[j] > digits[j + 1],设置digits[j + 1] = 9;digits[j]--;其他情况直接跳出循环。
过程详见代码:
class Solution {
public:
int monotoneIncreasingDigits(int N) {
int n = N;
if (N < 10) return N;
if (N == 10) return 9;
vector<int> digits;
while (N)
{
digits.push_back(N % 10);
N /= 10;
}
reverse(digits.begin(), digits.end());
int i = 0;
for (; i < digits.size() - 1; i++)
{
if (digits[i] > digits[i + 1])
{
digits[i]--;
break;
}
}
if (i == digits.size()) return n;
for (int j = i + 1; j < digits.size(); j++) digits[j] = 9;
for (int j = i - 1; j >= 0; j--)
{
if (digits[j] > digits[j + 1])
{
digits[j + 1] = 9;
digits[j]--;
}
else break;
}
int res = 0;
for (int t = 0; t < digits.size(); t++)
{
res = res * 10 + digits[t];
}
return res;
}
};