当前位置: 首页 > 工具软件 > Frozen > 使用案例 >

tensorflow2-savedmodel convert to pb(frozen_graph)

长孙明知
2023-12-01

1.frozen graph:

import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
frozen_out_path = '/data1/gyx/QR/SSD_Tensorflow2.0-master/convert/pb'
frozen_graph_filename = "frozen_graph_ssd_multi.pb"
saved_model_path= '/data1/gyx/QR/SSD_Tensorflow2.0-master/result/weight/ssd_multi/pb/'

# model = tf.keras.models.load_model(saved_model_path)
# model.summary()
# images=tf.random.uniform((1, 300, 300, 3))
# print(model.predict(images)[0].shape) #(1, 8732, 5)
# print(model.predict(images)[1].shape) #(1, 8732, 4)

# 定义输入格式
img = tf.random.uniform((1, 300, 300, 3))

# 加载模型
network = tf.keras.models.load_model(saved_model_path)

# Convert Keras model to ConcreteFunction
full_model = tf.function(lambda x: network(x))

full_model = full_model.get_concrete_function(
tf.TensorSpec(img.shape, img.dtype)) # (1, 300, 300, 3) <dtype: 'uint8'>

# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()

layers = [op.name for op in frozen_func.graph.get_operations()]
print("-" * 50)
print("Frozen model layers: ")
for layer in layers:
    print(layer)

print("-" * 50)
print("Frozen model inputs: ") #[<tf.Tensor 'x:0' shape=(1, 300, 300, 3) dtype=float32>]
print(frozen_func.inputs)
print("Frozen model outputs: ") #[<tf.Tensor 'Identity:0' shape=(1, 8732, 5) dtype=float32>, <tf.Tensor 'Identity_1:0' shape=(1, 8732, 4) dtype=float32>]
print(frozen_func.outputs)

# Save frozen graph from frozen ConcreteFunction to hard drive
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
		logdir=frozen_out_path,
		name=frozen_graph_filename,
		as_text=False)

# import netron
# netron.start(os.path.join(frozen_out_path,frozen_graph_filename))

2. predict pb

import cv2
import tensorflow.compat.v1 as tf
import numpy as np
import os
import cv2
import copy
import config as c
from utils.aug_utils import color_normalize
from utils.anchor_utils import generate_anchors, from_offset_to_box,from_offset_to_box_nms
from utils.eval_utils import show_box,show_multibox
tf.disable_v2_behavior()
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

path='/data1/gyx/QR/SSD_Tensorflow2.0-master/convert/pb/frozen_graph_ssd_multi.pb'
image_path = '/data1/gyx/QR/SSD_Tensorflow2.0-master/test_pic/20210330101245.bmp'
img_cv2 = cv2.imread(image_path)
height, width, _ = np.shape(img_cv2)

#### 第一种图像归一化方法 ####
# (1, 3, 300, 300)
# blob = cv2.dnn.blobFromImage(img_cv2,
#                                 scalefactor=1.0 / 255,
#                                 size=(300, 300),
#                                 mean=(0, 0, 0),
#                                 swapRB=False,
#                                 crop=False)
# blob = cv2.dnn.blobFromImage(img_cv2,
#                                 scalefactor=1.0 / 255,
#                                 size=(300, 300),
#                                 mean=(103.939/ 255, 116.779/ 255, 123.68/ 255),
#                                 swapRB=False,
#                                 crop=False)
# (1, 300, 300, 3)
# input_image = np.transpose(blob, (0,2,3,1))

#### 第二种图像归一化方法(按照训练模型格式) ####
input_image = np.array([color_normalize(cv2.resize(copy.copy(img_cv2), tuple(c.input_shape[:2])))], dtype=np.float32)
print(input_image.shape)

with tf.gfile.FastGFile(path, 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
with tf.Session() as sess:
    # Restore session
    sess.graph.as_default()
    tf.import_graph_def(graph_def, name='')

    out = sess.run([sess.graph.get_tensor_by_name('Identity:0'),
                    sess.graph.get_tensor_by_name('Identity_1:0')
                    ],feed_dict={'x:0': input_image})
    # out={'detection_classes':out[0],'detection_boxes':out[1]}
    # print(out)
anchors = generate_anchors()
cls_pred, loc_pred = out[0],out[1]
print(cls_pred.shape, loc_pred.shape)
# print(type(loc_pred)) #<class 'numpy.ndarray'>
# cls_pred = tf.convert_to_tensor(np.array(cls_pred), dtype='float32')
# loc_pred = tf.convert_to_tensor(np.array(loc_pred), dtype='float32')
# print(cls_pred)
# print(loc_pred)
boxes, scores, labels = from_offset_to_box(loc_pred[0], cls_pred[0], anchors,
                                               anchor_belongs_to_one_class=True, score_threshold=0.1)
print(boxes, scores, labels)
# print(boxes)
boxes_new=[]
score_new=[]
label_new=[]
for box, score, label in zip(boxes, scores, labels):
    box[0] = box[0] / c.input_shape[1] * width  # left
    box[1] = box[1] / c.input_shape[0] * height  # top
    box[2] = box[2] / c.input_shape[1] * width  # right
    box[3] = box[3] / c.input_shape[0] * height  # bottom
    print('image: {}\nclass: {}\nconfidence: {:.4f}\n'.format(image_path, c.class_list[label], score))
    boxes_new.append(box)
    score_new.append(score)
    label_new.append(c.class_list[label])
show_multibox(img_cv2, boxes_new,score_new,label_new)

 类似资料:

相关阅读

相关文章

相关问答