以【tiny210 按键实验为例】
准备:
内核:Linux-3.0.8 (开发板的运行内核)
平台:Fedora14
例子:
建立空文件夹(ko文件),在里面添加需要制成的文件:
内核源码:my_button.c
Makefile文件:Makefile
测试文件:buttons_test.c
编辑内核源码:my_button.c 【采用按键驱动(异步通知机制)】 ———部分代码
my_button.c:
#define DEVICE_NAME "buttons_test"
static struct fasync_struct *button_async;
/*
* 按键中断出发确定按键值
*在中断处理程序中调用kill_fasync函数
*/
static irqreturn_t button_interrupt(int irq, void *dev_id)
{
struct button_desc *bdata = (struct button_desc *)dev_id;
mod_timer(&bdata->timer, jiffies + msecs_to_jiffies(40));
//发送信号SIGIO信号给fasync_struct 结构体所描述的PID,触发应用程序的SIGIO信号处理函数
kill_fasync(&button_async, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
/*
*驱动fasync接口实现
*/
static int mini210_buttons_fasync (int fd, struct file *filp, int on)
{
printk("driver: fifth_drv_fasync\n");
//初始化/释放 fasync_struct 结构体 (fasync_struct->fa_file->f_owner->pid)
return fasync_helper(fd, filp, on, &button_async);
}
static struct file_operations dev_fops = {
.owner = THIS_MODULE,
.open = mini210_buttons_open,
.release = mini210_buttons_close,
.read = mini210_buttons_read,
.poll = mini210_buttons_poll,
.fasync = mini210_buttons_fasync,
};
异步通知机制:
在Linux下,异步通知类似于信号机制,内核和应用程序之间采用通知方法来告知是否发生对应的事件,并进一步采取相应的动作,当产生按键动作时,发生中断,由驱动程序使用kill_fasync函数告知应用程序,而应用程序需要向内核提供PID,然后就可以工作了。
Makefile文件:Makefile
内容如下:
obj-m := my_button.o #要生成的模块名
my_button-objs:= module #生成这个模块名所需要的目标文件
#KDIR := /lib/modules/`uname -r`/build #Fedora14 默认的内核目录
KDIR := /opt/FriendlyARM/tiny210/android/linux-3.0.8 #自定义内核目录(tiny210运行内核)
PWD := $(shell pwd)
MAKE:=make
default:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
clean:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) clean
说明:
obj-m = *.o
obj-y = *.o
上面两者的区别在于,前者才会生成ko文件,后者只是代码编译进内核,并不生成ko文件。
生成KO文件,分两种情况:单个.c文件和多个.c文件
单个.c文件:
kernel配置文件中定义
CONFIG_RUNYEE_CAMVIB=m
注意上面的m,表示作为一个模块进行编译,最后在MAKEFILE中需要用到的编译开关。
然后再相应的源码目录中的MAKEFILE中添加如下语句:
obj-$(CONFIG_RUNYEE_CAMVIB) := camvib.o
上面的一行的作用就是编译camvib.c的源文件,同时会生成相应的camvib.ko文件,和编译生成的camvib.o在同一目录
最后就是insmod动作了:
insmod /system/lib/modules/camvib.ko
2.多个.c文件生成ko文件
kernel配置文件中定义
CONFIG_TOUCHSCREEN_FOCALTECH=m
注意上面的m,表示作为一个模块进行编译,最后在MAKEFILE中需要用到的编译开关。
然后再相应的源码目录中的MAKEFILE中添加如下语句:
obj-$(CONFIG_TOUCHSCREEN_FOCALTECH) += focaltech_ts.o
focaltech_ts-objs := focaltech.o
focaltech_ts-objs += focaltech_ctl.o
focaltech_ts-objs += focaltech_ex_fun.o
上面的意思就是编译生成ko文件需要三个.c文件【focaltech.c focaltech_ctl.c focaltech_ex_fun.c】,最后
生成名为focaltech_ts的ko文件,注意ko文件名一定不能为focaltech。那么在obj-m和lpc-objs中都含有focaltech.o,
对make来讲会产生循环和混淆,因此也不能这样书写
最后就是insmod动作了:
insmod /system/lib/modules/focaltech_ts.ko
注意事项:
1、内核目录
2、Makefile中obj-m:=my_button.o 这个和源文件my_button.c要对应
3、my_button-objs:=module 这个my_button也是和my_button.c对应的
如果源文件为your.c
这两句话就应该改为obj-m:=your.o
your-objs:=module
4、查看输出的时候 用dmesg输出信息太多,可以用grep过滤一下
dmesg | grep “buttons_test”
测试文件:buttons_test.c
核心代码:
//在应用程序中捕捉SIGIO信号(由驱动程序发送)
signal(SIGIO, my_signal_fun);
//将当前进程PID设置为fd文件所对应驱动程序将要发送SIGIO,SIGUSR信号进程PID
fcntl(buttons_fd, F_SETOWN, getpid());
//获取fd的打开方式
Oflags = fcntl(buttons_fd, F_GETFL);
//将fd的打开方式设置为FASYNC — 即 支持异步通知
//该行代码执行会触发 驱动程序中 file_operations->fasync 函数 ——fasync函数调用fasync_helper初始化一个fasync_struct结构体,该结构体描述了将要发送信号的进程PID (fasync_struct->fa_file->f_owner->pid)
fcntl(buttons_fd, F_SETFL, Oflags | FASYNC);
代码如下:
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <errno.h>
#include <signal.h>
int buttons_fd;
int break_flg;
char buttons[8] = {'0', '0', '0', '0', '0', '0', '0', '0'};
//信号处理函数
void my_signal_fun(int signum)
{
char current_buttons[8];
int count_of_changed_key;
int i;
if (read(buttons_fd, current_buttons, sizeof current_buttons) != sizeof current_buttons) {
perror("read buttons:");
exit(1);
}
for (i = 0, count_of_changed_key = 0; i < sizeof buttons / sizeof buttons[0]; i++) {
if (buttons[i] != current_buttons[i]) {
buttons[i] = current_buttons[i];
printf("%skey %d is %s", count_of_changed_key? ", ": "", i+1, buttons[i] == '0' ? "0" : "1");
count_of_changed_key++;
}
}
if (count_of_changed_key) {
printf("\n");
}
if((buttons[0] == '1')&&(buttons[7]=='1'))
{
printf("key test off\n");
break_flg = 1;
}
}
int main(void)
{
int Oflags;
break_flg = 0;
//在应用程序中捕捉SIGIO信号(由驱动程序发送)
signal(SIGIO, my_signal_fun);
buttons_fd = open("/dev/buttons_test", 0);
if (buttons_fd < 0) {
perror("open device buttons");
exit(1);
}
//将当前进程PID设置为fd文件所对应驱动程序将要发送SIGIO,SIGUSR信号进程PID
fcntl(buttons_fd, F_SETOWN, getpid());
//获取fd的打开方式
Oflags = fcntl(buttons_fd, F_GETFL);
//将fd的打开方式设置为FASYNC --- 即 支持异步通知
//该行代码执行会触发 驱动程序中 file_operations->fasync 函数 ------fasync函数调用fasync_helper初始化一个fasync_struct结构体,该结构体描述了将要发送信号的进程PID (fasync_struct->fa_file->f_owner->pid)
fcntl(buttons_fd, F_SETFL, Oflags | FASYNC);
while (1)
{
sleep(1000);
if(break_flg == 1)
break;
}
close(buttons_fd);
return 0;
}
完整代码:
//内核源码:
/*
* linux/drivers/char/mini210_buttons.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/sched.h>
#include <linux/poll.h>
#include <linux/irq.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <linux/interrupt.h>
#include <asm/uaccess.h>
#include <mach/hardware.h>
#include <linux/platform_device.h>
#include <linux/cdev.h>
#include <linux/miscdevice.h>
#include <mach/map.h>
#include <mach/gpio.h>
#include <mach/regs-clock.h>
#include <mach/regs-gpio.h>
#define DEVICE_NAME "buttons_test"
struct button_desc {
int gpio;
int number;
char *name;
struct timer_list timer;
};
static struct button_desc buttons[] = {
{ S5PV210_GPH2(0), 0, "KEY0" },
{ S5PV210_GPH2(1), 1, "KEY1" },
{ S5PV210_GPH2(2), 2, "KEY2" },
{ S5PV210_GPH2(3), 3, "KEY3" },
{ S5PV210_GPH3(0), 4, "KEY4" },
{ S5PV210_GPH3(1), 5, "KEY5" },
{ S5PV210_GPH3(2), 6, "KEY6" },
{ S5PV210_GPH3(3), 7, "KEY7" },
};
static volatile char key_values[] = {
'0', '0', '0', '0', '0', '0', '0', '0'
};
static DECLARE_WAIT_QUEUE_HEAD(button_waitq);
static volatile int ev_press = 0;
static struct fasync_struct *button_async;
static void mini210_buttons_timer(unsigned long _data)
{
struct button_desc *bdata = (struct button_desc *)_data;
int down;
int number;
unsigned tmp;
tmp = gpio_get_value(bdata->gpio);
/* active low */
down = !tmp;
printk("KEY %d: %08x\n", bdata->number, down);
number = bdata->number;
if (down != (key_values[number] & 1)) {
key_values[number] = '0' + down;
ev_press = 1;
wake_up_interruptible(&button_waitq);
}
}
static irqreturn_t button_interrupt(int irq, void *dev_id)
{
struct button_desc *bdata = (struct button_desc *)dev_id;
mod_timer(&bdata->timer, jiffies + msecs_to_jiffies(40));
//发送信号SIGIO信号给fasync_struct 结构体所描述的PID,触发应用程序的SIGIO信号处理函数
kill_fasync(&button_async, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
static int mini210_buttons_open(struct inode *inode, struct file *file)
{
int irq;
int i;
int err = 0;
for (i = 0; i < ARRAY_SIZE(buttons); i++) {
if (!buttons[i].gpio)
continue;
setup_timer(&buttons[i].timer, mini210_buttons_timer,
(unsigned long)&buttons[i]);
irq = gpio_to_irq(buttons[i].gpio);
err = request_irq(irq, button_interrupt, IRQ_TYPE_EDGE_BOTH,
buttons[i].name, (void *)&buttons[i]);
if (err)
break;
}
if (err) {
i--;
for (; i >= 0; i--) {
if (!buttons[i].gpio)
continue;
irq = gpio_to_irq(buttons[i].gpio);
disable_irq(irq);
free_irq(irq, (void *)&buttons[i]);
del_timer_sync(&buttons[i].timer);
}
return -EBUSY;
}
ev_press = 1;
return 0;
}
static int mini210_buttons_close(struct inode *inode, struct file *file)
{
int irq, i;
for (i = 0; i < ARRAY_SIZE(buttons); i++) {
if (!buttons[i].gpio)
continue;
irq = gpio_to_irq(buttons[i].gpio);
free_irq(irq, (void *)&buttons[i]);
del_timer_sync(&buttons[i].timer);
}
return 0;
}
static int mini210_buttons_read(struct file *filp, char __user *buff,
size_t count, loff_t *offp)
{
unsigned long err;
if (!ev_press) {
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
else
wait_event_interruptible(button_waitq, ev_press);
}
ev_press = 0;
err = copy_to_user((void *)buff, (const void *)(&key_values),
min(sizeof(key_values), count));
return err ? -EFAULT : min(sizeof(key_values), count);
}
static unsigned int mini210_buttons_poll( struct file *file,
struct poll_table_struct *wait)
{
unsigned int mask = 0;
poll_wait(file, &button_waitq, wait);
if (ev_press)
mask |= POLLIN | POLLRDNORM;
return mask;
}
static int mini210_buttons_fasync (int fd, struct file *filp, int on)
{
printk("driver: fifth_drv_fasync\n");
//初始化/释放 fasync_struct 结构体 (fasync_struct->fa_file->f_owner->pid)
return fasync_helper(fd, filp, on, &button_async);
}
static struct file_operations dev_fops = {
.owner = THIS_MODULE,
.open = mini210_buttons_open,
.release = mini210_buttons_close,
.read = mini210_buttons_read,
.poll = mini210_buttons_poll,
.fasync = mini210_buttons_fasync,
};
static struct miscdevice misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = DEVICE_NAME,
.fops = &dev_fops,
};
static int __init button_dev_init(void)
{
int ret;
ret = misc_register(&misc);
printk(DEVICE_NAME"\tinitialized\n");
return ret;
}
static void __exit button_dev_exit(void)
{
misc_deregister(&misc);
}
module_init(button_dev_init);
module_exit(button_dev_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("FriendlyARM Inc.");
Makefile:
obj-m := my_button.o #要生成的模块名
my_buttonmodule-objs:= module #生成这个模块名所需要的目标文件
#KDIR := /lib/modules/`uname -r`/build
KDIR := /opt/FriendlyARM/tiny210/android/linux-3.0.8
PWD := $(shell pwd)
MAKE:=make
default:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules
clean:
$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) clean
#default:
# make -C $(KDIR) M=$(PWD) modules
#clean:
# rm -rf *.o *.cmd *.ko *.mod.c .tmp_versions
测试代码:buttons_test.c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <errno.h>
#include <signal.h>
int buttons_fd;
int break_flg;
char buttons[8] = {'0', '0', '0', '0', '0', '0', '0', '0'};
//信号处理函数
void my_signal_fun(int signum)
{
char current_buttons[8];
int count_of_changed_key;
int i;
if (read(buttons_fd, current_buttons, sizeof current_buttons) != sizeof current_buttons) {
perror("read buttons:");
exit(1);
}
for (i = 0, count_of_changed_key = 0; i < sizeof buttons / sizeof buttons[0]; i++) {
if (buttons[i] != current_buttons[i]) {
buttons[i] = current_buttons[i];
printf("%skey %d is %s", count_of_changed_key? ", ": "", i+1, buttons[i] == '0' ? "0" : "1");
count_of_changed_key++;
}
}
if (count_of_changed_key) {
printf("\n");
}
if((buttons[0] == '1')&&(buttons[7]=='1'))
{
printf("key test off\n");
break_flg = 1;
//close(buttons_fd);
}
}
int main(void)
{
int Oflags;
break_flg = 0;
//在应用程序中捕捉SIGIO信号(由驱动程序发送)
signal(SIGIO, my_signal_fun);
buttons_fd = open("/dev/buttons_test", 0);
if (buttons_fd < 0) {
perror("open device buttons");
exit(1);
}
//将当前进程PID设置为fd文件所对应驱动程序将要发送SIGIO,SIGUSR信号进程PID
fcntl(buttons_fd, F_SETOWN, getpid());
//获取fd的打开方式
Oflags = fcntl(buttons_fd, F_GETFL);
//将fd的打开方式设置为FASYNC --- 即 支持异步通知
//该行代码执行会触发 驱动程序中 file_operations->fasync 函数 ------fasync函数调用fasync_helper初始化一个fasync_struct结构体,该结构体描述了将要发送信号的进程PID (fasync_struct->fa_file->f_owner->pid)
fcntl(buttons_fd, F_SETFL, Oflags | FASYNC);
while (1)
{
sleep(1000);
if(break_flg == 1)
break;
}
for (;;) {
char current_buttons[8];
int count_of_changed_key;
int i;
if (read(buttons_fd, current_buttons, sizeof current_buttons) != sizeof current_buttons) {
perror("read buttons:");
exit(1);
}
for (i = 0, count_of_changed_key = 0; i < sizeof buttons / sizeof buttons[0]; i++) {
if (buttons[i] != current_buttons[i]) {
buttons[i] = current_buttons[i];
printf("%skey %d is %s", count_of_changed_key? ", ": "", i+1, buttons[i] == '0' ? "0" : "1");
count_of_changed_key++;
}
}
if (count_of_changed_key) {
printf("\n");
}
if((buttons[0] == '1')&&(buttons[7]=='1'))
{
printf("key test off\n");
break;
}
}
close(buttons_fd);
return 0;
}