Parallel NetCDF 简介

郎欣然
2023-12-01

Parallel NetCDF API

  • 所有C接口前加ncmpi前缀,Fortran接口前加nfmpi前缀
  • 函数返回整数 NetCDF 状态变量

1. Variable and Parameter Types

函数采用MPI_Offset类型来表示大小参数,与size_t相比(32-bit)MPI_Offset为64位变量,表示数据几乎不受限制。

有关变量起始下标编号start,各个维度长度count,及间隔大小stride等标量或向量都需定义为MPI_Offset类型。


2. Dataset Functions

ncmpi_createncmpi_open函数多了一个附加参数MPI_Info,这个参数主要用于传递提示变量。调用时传递MPI_INFO_NULL则可以忽略此功能。

int ncmpi_create(MPI_Comm comm,
                 const char *path,
                 int cmode,
                 MPI_Info info,
                 int *ncidp)
int ncmpi_open(MPI_Comm comm,
               const char *path,
               int omode,
               MPI_Info info,
               int *ncidp)

3. Define Mode Functions

所有进程必须采用相同值调用这类函数,在定义结束后,所有进程定义内容会进行检查与比较。若其不相同,函数ncmpi_enddef会返回错误代码。


4. Inquiry Functions

Inquiry函数可以在定义模式(define mode)或数据模式(data mode)下被调用。


5. Attribute Functions

Attributes(属性)主要在NetCDF中储存标量或是向量来描述变量。

在原始接口中,attribute函数可以在定义模式或数据模式下调用;然而,在数据模式状态下修改attributes的值有可能会失败。主要由于文件所需空间可能会改变。


6. Data Mode Functions

数据模式(data mode)可分为两个状态:总体模式(collective mode)与独立模式(independent mode)。当用户调用ncmpi_enddefncmpi_open后,文件自动进入总体模式。

在总体模式内,所有进程必须在代码相同位置调用相同的函数。调用参数如 start,count,stride 等则可以不同;在独立模式内,进程不必共同调用API。

在定义状态(define mode)下不能进入独立模式,需要首先调用ncmpi_enddef来离开定义状态随后进入数据模式。

数据模式函数分为两类。第一类模仿传统的NetCDF函数并且将其简单的又传统NetCDF接口迁移成为并行NetCDF函数接口。我们称这类数据接口为高级数据模式接口(high level data mode interface)。

第二个类函数使用更多的MPI功能来提供更好的处理内部数据,并且更充分地展示MPI-IO处理应用程序的能力。所有的第一类函数将按照这类函数实现。我们这类称为灵活数据模式接口flexible data mode interface)。

在两类函数中,都提供了包括独立模式与总体模式操作。总体模式函数名后以_all结尾。所有这些进程必须同时调用该函数。

6.1. High Level Data Mode Interface

每个独立函数都类似于NetCDF数据模式接口。主要变化就是使用MPI_Offset代替size_t类型数据。

  • ncmpi_put_var_<type> 将变量所有值写入Netcdf文件;
  • ncmpi_put_vara_<type> 写入数据部分由start向量指定起始位置,count指定各维度长度;
  • ncmpi_put_vars_<type> 写入数据部分由start向量指定起始位置,count指定各维度长度,stride指定各维度间隔;
  • ncmpi_put_varm_<type>

6.2. Flexible Data Mode Interface

6.3. Mapping Between NetCDF and MPI Types


7. Q & A

For more details, please refer to Parallel netCDF Q&A

Q: How do I use the buffered nonblocking write APIs?
A: Buffered nonblocking write APIs copy the contents of user buffers into an internally allocated buffer, so the user buffers can be reused immediately after the calls return. A typical way to use these APIs is described below.

  • First, tell PnetCDF how much space can be allocated to be used by the APIs.
  • Make calls to the buffered put APIs.
  • Make calls to the (collective) wait APIs.
  • Free the space allocated by the internal buffer.

For further information about the buffered nonblocking APIs, readers are referred to this page.

Q: What is the difference between collective and independent APIs?
A: Collective APIs requires all MPI processes to participate the call. This requirement allows MPI-IO and PnetCDF to coordinate the I/O requesting processes to rearrange requests into a form that can achieve the best performance from the underlying file system. On the contrary, independent APIs (also referred as non-collective) has no such requirement. All PnetCDF collective APIs (except create, open, and close) have a suffix of _all, corresponding to their independent counterparts. To switch from collective data mode to independent mode, users must call ncmpi_begin_indep_data. API ncmpi_begin_indep_data is to exit the independent mode.

Q: Should I use collective APIs or independent APIs?
A: Users are encouraged to use collective APIs whenever possible. Collective API calls require the participation of all MPI processes that open the shared file. This requirement allows MPI-IO and PnetCDF to coordinate the I/O requesting processes to rearrange requests into a form that can achieve the best performance from the underlying file system. If the nature of user's I/O does not permit to call collective APIs (such as the number of requests are not equal among processes, or is determined at the run time), then we recommend the followings.

  • Force all the processes participate the collective calls. When a process has nothing to request, users can still call a collective API with zero-length request. This is achieved by set the contents of argument count to zero.
  • Use nonblocking APIs. Individual processes can make any number of calls to nonblocking APIs independently from other processes. At the end, a collective wait API, ncmpi_wait_all, is recommended to used to allow all nonblocking requests to commit to the file system.

总结:推荐使用集合接口(collective APIs),不适用也尽量使。


8. Example

/*********************************************************************
 *
 *  Copyright (C) 2012, Northwestern University and Argonne National Laboratory
 *  See COPYRIGHT notice in top-level directory.
 *
 *********************************************************************/
/* $Id$ */

/* simple demonstration of pnetcdf 
 * text attribute on dataset
 * write out rank into 1-d array collectively.
 * The most basic way to do parallel i/o with pnetcdf */

/* This program creates a file, say named output.nc, with the following
   contents, shown by running ncmpidump command .

    % mpiexec -n 4 pnetcdf-write-standard /orangefs/wkliao/output.nc

    % ncmpidump /orangefs/wkliao/output.nc 
    netcdf output {
    // file format: CDF-2 (large file)
    dimensions:
            d1 = 4 ;
            time = UNLIMITED ; // (2 currently)
    variables:
            int v1(time, d1) ;
            int v2(d1) ;

    // global attributes:
                :string = "Hello World\n",
        "" ;
    data:

         v1 = 
            0, 1, 2, 3,
            1, 2, 3, 4 ;


         v2 = 0, 1, 2, 3 ;
    }
*/

#include <stdlib.h>
#include <mpi.h>
#include <pnetcdf.h>
#include <stdio.h>

static void handle_error(int status, int lineno)
{
    fprintf(stderr, "Error at line %d: %s\n", lineno, ncmpi_strerror(status));
    MPI_Abort(MPI_COMM_WORLD, 1);
}

int main(int argc, char **argv) {

    int ret, ncfile, nprocs, rank, dimid1, dimid2, varid1, varid2, ndims;
    MPI_Offset start, count=1;
    int t, i;
    int v1_dimid[2];
    MPI_Offset v1_start[2], v1_count[2];
    int v1_data[4];
    char buf[13] = "Hello World\n";
    int data;

    MPI_Init(&argc, &argv);

    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

    if (argc != 2) {
        if (rank == 0) printf("Usage: %s filename\n", argv[0]);
        MPI_Finalize();
        exit(-1);
    }

    ret = ncmpi_create(MPI_COMM_WORLD, argv[1],
                       NC_CLOBBER, MPI_INFO_NULL, &ncfile);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    ret = ncmpi_def_dim(ncfile, "d1", nprocs, &dimid1);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    ret = ncmpi_def_dim(ncfile, "time", NC_UNLIMITED, &dimid2);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    v1_dimid[0] = dimid2;
    v1_dimid[1] = dimid1;
    ndims = 2;

    ret = ncmpi_def_var(ncfile, "v1", NC_INT, ndims, v1_dimid, &varid1);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    ndims = 1;

    ret = ncmpi_def_var(ncfile, "v2", NC_INT, ndims, &dimid1, &varid2);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    ret = ncmpi_put_att_text(ncfile, NC_GLOBAL, "string", 13, buf);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    /* all processors defined the dimensions, attributes, and variables,
     * but here in ncmpi_enddef is the one place where metadata I/O
     * happens.  Behind the scenes, rank 0 takes the information and writes
     * the netcdf header.  All processes communicate to ensure they have
     * the same (cached) view of the dataset */

    ret = ncmpi_enddef(ncfile);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    start=rank, count=1, data=rank;

    ret = ncmpi_put_vara_int_all(ncfile, varid2, &start, &count, &data);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    for (t = 0; t<2; t++){

        v1_start[0] = t, v1_start[1] = rank;
        v1_count[0] = 1, v1_count[1] = 1;
        for (i = 0; i<4; i++){
            v1_data[i] = rank+t;
        }
        
        /* in this simple example every process writes its rank to two 1d variables */
        ret = ncmpi_put_vara_int_all(ncfile, varid1, v1_start, v1_count, v1_data);
        if (ret != NC_NOERR) handle_error(ret, __LINE__);

    }
    
    ret = ncmpi_close(ncfile);
    if (ret != NC_NOERR) handle_error(ret, __LINE__);

    MPI_Finalize();

    return 0;
}

转载于:https://www.cnblogs.com/li12242/p/5551387.html

 类似资料: