fuzz_one
/* Take the current entry from the queue, fuzz it for a while. This
function is a tad too long... returns 0 if fuzzed successfully, 1 if
skipped or bailed out. */
/*从队列中取出当前条目,将其模糊一段时间。此函数有点太长…如果成功模糊,则返回0;如果跳过或退出,则返回1*/
static u8 fuzz_one(char** argv) {
s32 len, fd, temp_len, i, j;
u8 *in_buf, *out_buf, *orig_in, *ex_tmp, *eff_map = 0;
u64 havoc_queued, orig_hit_cnt, new_hit_cnt;
u32 splice_cycle = 0, perf_score = 100, orig_perf, prev_cksum, eff_cnt = 1;
u8 ret_val = 1, doing_det = 0;
u8 a_collect[MAX_AUTO_EXTRA];
u32 a_len = 0;
#ifdef IGNORE_FINDS
/* In IGNORE_FINDS mode, skip any entries that weren't in the
initial data set. */
/*在IGNORE_FINDS模式下,跳过初始数据集中不存在的任何条目*/
if (queue_cur->depth > 1) return 1;
#else
if (pending_favored) {如果pending_favored不为0
/* If we have any favored, non-fuzzed new arrivals in the queue,
possibly skip to them at the expense of already-fuzzed or non-favored
cases. */
/*如果队列中有任何受欢迎的、不模糊的新到达者,可能会以已经模糊或不受青睐的案例为代价跳过它们*/
if ((queue_cur->was_fuzzed || !queue_cur->favored) &&
UR(100) < SKIP_TO_NEW_PROB) return 1;
对于queue_cur被fuzz过或者不是favored的,有99%的几率直接返回1。
} else if (!dumb_mode && !queue_cur->favored && queued_paths > 10) {
如果pending_favored为0且queued_paths(即queue里的case总数)大于10
/* Otherwise, still possibly skip non-favored cases, albeit less often.
The odds of skipping stuff are higher for already-fuzzed inputs and
lower for never-fuzzed entries. */
/*否则,仍有可能跳过不受欢迎的案例,尽管频率较低。对于已经模糊的输入,跳过内容的概率较高,而对于从未模糊的输入则较低*/
if (queue_cycle > 1 && !queue_cur->was_fuzzed) {如果queue_cycle(队列被完全变异次数)大于1且queue_cur没有被fuzz过
if (UR(100) < SKIP_NFAV_NEW_PROB) return 1;有75%的概率直接返回1
} else {
如果queue_cur被fuzz过,否则有95%的概率直接返回1
if (UR(100) < SKIP_NFAV_OLD_PROB) return 1;
}
}
#endif /* ^IGNORE_FINDS */
if (not_on_tty) {
ACTF("Fuzzing test case #%u (%u total, %llu uniq crashes found)...",
current_entry, queued_paths, unique_crashes);
fflush(stdout);
}
/* Map the test case into memory. */
将测试用例映射到内存中
fd = open(queue_cur->fname, O_RDONLY);用只读的方式打开queue_cur->fname
if (fd < 0) PFATAL("Unable to open '%s'", queue_cur->fname);
len = queue_cur->len;设置len为queue_cur->len
orig_in = in_buf = mmap(0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
打开该case对应的文件,并通过mmap映射到内存里,地址赋值给in_buf和orig_in
if (orig_in == MAP_FAILED) PFATAL("Unable to mmap '%s'", queue_cur->fname);
close(fd);关闭fd文件
/* We could mmap() out_buf as MAP_PRIVATE, but we end up clobbering every
single byte anyway, so it wouldn't give us any performance or memory usage
benefits. */
/*我们可以将mmap()out_buf作为MAP_PRIVATE,但我们最终还是会对每个字节进行筛选,因此它不会给我们带来任何性能或内存使用方面的好处*/
out_buf = ck_alloc_nozero(len);分配len大小的内存,并初始化为全0,然后将地址赋值给out_buf
subseq_tmouts = 0;
cur_depth = queue_cur->depth;
/*******************************************
* CALIBRATION (only if failed earlier on) *CALIBRATION阶段
*******************************************/
if (queue_cur->cal_failed) {
u8 res = FAULT_TMOUT;
if (queue_cur->cal_failed < CAL_CHANCES) {
/* Reset exec_cksum to tell calibrate_case to re-execute the testcase
avoiding the usage of an invalid trace_bits.
For more info: https://github.com/AFLplusplus/AFLplusplus/pull/425 */
重置exec_cksum以告知calibrate_case重新执行测试用例,避免使用无效trace_bits(共享内存)。
queue_cur->exec_cksum = 0;
假如当前项有校准错误,并且校准错误次数小于3次,那么就用calibrate_case再次校准。
res = calibrate_case(argv, queue_cur, in_buf, queue_cycle - 1, 0);
if (res == FAULT_ERROR)
FATAL("Unable to execute target application");
}
if (stop_soon || res != crash_mode) {
cur_skipped_paths++;
goto abandon_entry;
}
}
/************
* TRIMMING *修建阶段
************/
if (!dumb_mode && !queue_cur->trim_done) {如果该case没有trim过
u8 res = trim_case(argv, queue_cur, in_buf);调用函数对其进行(trim)修建
if (res == FAULT_ERROR)
FATAL("Unable to execute target application");无法执行目标应用程序
if (stop_soon) {如果设置了stop_soon
cur_skipped_paths++;cur_skipped_paths计数加一
goto abandon_entry;跳转到 abandon_entry
}
/* Don't retry trimming, even if it failed. */
queue_cur->trim_done = 1;设置当前queue_cur为已经trim过。
if (len != queue_cur->len)如果len不等于queue_cur->len(队列长度)
len = queue_cur->len;令len = queue_cur->len。
}
memcpy(out_buf, in_buf, len);将in_buf中的内容拷贝len到out_buf
/*********************
* PERFORMANCE SCORE *绩效分数阶段
*********************/
orig_perf = perf_score = calculate_score(queue_cur);计算queue_cur的score
/* Skip right away if -d is given, if we have done deterministic fuzzing on
this entry ourselves (was_fuzzed), or if it has gone through deterministic
testing in earlier, resumed runs (passed_det). */
if (skip_deterministic || queue_cur->was_fuzzed || queue_cur->passed_det)
如果设置了skip_deterministic或者queue被fuzz过了或者queue_cur->passed_det=1
goto havoc_stage;直接跳转到havoc_stage
/* Skip deterministic fuzzing if exec path checksum puts this out of scope
for this master instance. */
/*如果执行路径校验和使其超出此主实例的范围,则跳过确定性模糊*/
if (master_max && (queue_cur->exec_cksum % master_max) != master_id - 1)
如果当前的queue_cur->exec_cksum % master_max不等于master_id - 1,
goto havoc_stage;直接跳转到havoc_stage
doing_det = 1;设置doing_det为1
/*********************************************
* SIMPLE BITFLIP (+dictionary construction) *简单位翻转(+字典构造)
*********************************************/
#define FLIP_BIT(_ar, _b) do { \
u8* _arf = (u8*)(_ar); \
u32 _bf = (_b); \
_arf[(_bf) >> 3] ^= (128 >> ((_bf) & 7)); \
} while (0)
(_bf) & 7)相当于模8,产生了(0、1、2、3、4、5、6、7)
128的二进制为10000000
等式的右边相当于将128右移动0-7个单位
(_bf) >> 3相当于_bf/8
stage_cur最大为stage_max相当于len << 3
所以对于FLIP_BIT(_ar, _b)来说,_bf最大为(len << 3)>>3还是len
也就是说,对于这个循环来说,每运行8次循环_arf[i](大小为一个字节)的下标i就会加一,i最大为len
同时在每8次为一组的循环中,128分别右移0、1、2、3、4、5、6、7位,将右移后产生的数字与_arf[i]进行异或翻转,而_arf[i]大小为一个字节,等价于对这个字节的每一位都做一次翻转异或
/* Single walking bit. */
定义一些变量
stage_short = "flip1";
stage_max = len << 3;定义stage_max为len << 3
stage_name = "bitflip 1/1";
在进行bitflip 1/1变异时,对于每个byte的最低位(least significant bit)翻转还进行了额外的处理:如果连续多个bytes的最低位被翻转后,程序的执行路径都未变化,而且与原始执行路径不一致,那么就把这一段连续的bytes判断是一条token。
比如对于SQL的SELECT *,如果SELECT被破坏,则肯定和正确的路径不一致,而被破坏之后的路径却肯定是一样的,比如AELECT和SBLECT,显然都是无意义的,而只有不破坏token,才有可能出现和原始执行路径一样的结果,所以AFL在这里就是在猜解关键字token。
stage_val_type = STAGE_VAL_NONE;
orig_hit_cnt = queued_paths + unique_crashes;
prev_cksum = queue_cur->exec_cksum;
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
stage_cur_byte = stage_cur >> 3;
FLIP_BIT(out_buf, stage_cur);调用了FLIP_BIT(out_buf, stage_cur)
if (common_fuzz_stuff(argv, out_buf, len))
当这一位被异或完毕后,调用common_fuzz_stuff(argv, out_buf, len)进行fuzz。如果返回一
goto abandon_entry;直接跳转到abandon_entry
FLIP_BIT(out_buf, stage_cur);再调用一次将异或翻转过来
这一部分代码中给出了注释进行解释:
比如说对于一串二进制:
xxxxxxxxIHDRxxxxxxxx
当我们改变IHDR中的任意一个都会导致路径的改变or破坏, "IHDR"就像在二进制串中的一整体的具有原子性的可检查的特殊值,afl希望能找到这些值。
if (!dumb_mode && (stage_cur & 7) == 7) {如果不是dumb_mode且stage_cur & 7不等于7
u32 cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
计算当前共享内存(trace_bits)的hash32为校验和
if (stage_cur == stage_max - 1 && cksum == prev_cksum) {
如果当前到达最后一轮循环并且cksum == prev_cksum
/* If at end of file and we are still collecting a string, grab the
final character and force output. */
if (a_len < MAX_AUTO_EXTRA)如果a_len小于MAX_AUTO_EXTRA
a_collect[a_len] = out_buf[stage_cur >> 3];
a_len++;
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
如果a_len 在MIN_AUTO_EXTRA与MAX_AUTO_EXTRA之间
maybe_add_auto(a_collect, a_len);将发现的新token加入a_extra[]
} else if (cksum != prev_cksum) {如果cksum != prev_cksum
/* Otherwise, if the checksum has changed, see if we have something
worthwhile queued up, and collect that if the answer is yes. */
if (a_len >= MIN_AUTO_EXTRA && a_len <= MAX_AUTO_EXTRA)
maybe_add_auto(a_collect, a_len);
a_len = 0;a_len归零
prev_cksum = cksum;令prev_cksum = cksum
}
/* Continue collecting string, but only if the bit flip actually made
any difference - we don't want no-op tokens. */
/*继续收集字符串,但前提是位翻转确实起到了任何作用-我们不希望没有op标记*/
if (cksum != queue_cur->exec_cksum) {
if (a_len < MAX_AUTO_EXTRA) a_collect[a_len] = out_buf[stage_cur >> 3];
a_len++;
}
}
}
new_hit_cnt = queued_paths + unique_crashes;更新new_hit_cnt为queued_paths + unique_crashes
stage_finds[STAGE_FLIP1] += new_hit_cnt - orig_hit_cnt;
stage_finds[STAGE_FLIP1]的值加上在整个FLIP_BIT中新发现的路径和Crash总和
stage_cycles[STAGE_FLIP1] += stage_max;
stage_cycles[STAGE_FLIP1]的值加上在整个FLIP_BIT中执行的target次数stage_max
/* Two walking bits. */连续翻转相邻的两位
stage_name = "bitflip 2/1";stage_name为bitflip 2/1原理和之前一样,只是这次是连续翻转相邻的两位。
stage_max = (len << 3) - 1;
for (stage_cur = 0; stage_cur < stage_max; stage_cur++)
{
FLIP_BIT(out_buf, stage_cur);
FLIP_BIT(out_buf, stage_cur + 1);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
FLIP_BIT(out_buf, stage_cur);
FLIP_BIT(out_buf, stage_cur + 1);
}
stage_short = "flip2";
stage_max = (len << 3) - 1;
orig_hit_cnt = new_hit_cnt;保存当前new_hit_cnt到orig_hit_cnt
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
stage_cur_byte = stage_cur >> 3;
FLIP_BIT(out_buf, stage_cur);
FLIP_BIT(out_buf, stage_cur + 1);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
FLIP_BIT(out_buf, stage_cur);
FLIP_BIT(out_buf, stage_cur + 1);
}
new_hit_cnt = queued_paths + unique_crashes;翻转结束后更新new_hit_cnt
然后保存结果到stage_finds[STAGE_FLIP2]和stage_cycles[STAGE_FLIP2]里
stage_finds[STAGE_FLIP2] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_FLIP2] += stage_max;
/* Four walking bits. */接下来同样的进入bitflip 4/1,连续翻转4次
stage_name = "bitflip 4/1";
stage_short = "flip4";
stage_max = (len << 3) - 3;
orig_hit_cnt = new_hit_cnt;
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
stage_cur_byte = stage_cur >> 3;
FLIP_BIT(out_buf, stage_cur);
FLIP_BIT(out_buf, stage_cur + 1);
FLIP_BIT(out_buf, stage_cur + 2);
FLIP_BIT(out_buf, stage_cur + 3);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
FLIP_BIT(out_buf, stage_cur);
FLIP_BIT(out_buf, stage_cur + 1);
FLIP_BIT(out_buf, stage_cur + 2);
FLIP_BIT(out_buf, stage_cur + 3);
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_FLIP4] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_FLIP4] += stage_max;
/*效应器图设置。
这些宏计算:
EFF_APOS-地图中特定文件偏移的位置。
EFF_ALEN-具有特定字节数的映射的长度。
EFF_SPAN_ALEN-映射字节序列的跨度。
*/
#define EFF_APOS(_p) ((_p) >> EFF_MAP_SCALE2)
#define EFF_REM(_x) ((_x) & ((1 << EFF_MAP_SCALE2) - 1))
#define EFF_ALEN(_l) (EFF_APOS(_l) + !!EFF_REM(_l))
#define EFF_SPAN_ALEN(_p, _l) (EFF_APOS((_p) + (_l) - 1) - EFF_APOS(_p) + 1)
/* Initialize effector map for the next step (see comments below). Always
flag first and last byte as doing something. */
eff_map = ck_alloc(EFF_ALEN(len));首先分配len大小的空间eff_map
eff_map[0] = 1;将eff_map[0]初始化为1;
if (EFF_APOS(len - 1) != 0) {
eff_map[EFF_APOS(len - 1)] = 1;
eff_cnt++;
}
/* Walking byte. */
在进行bitflip 8/8变异时,AFL还生成了一个非常重要的信息:effector map。这个effector map几乎贯穿了整个deterministic fuzzing的始终。
在对每个byte进行翻转时,如果其造成执行路径与原始路径不一致,就将该byte在effector map中标记为1,即“有效”的,否则标记为0,即“无效”的
这样做的逻辑是:如果一个byte完全翻转,都无法带来执行路径的变化,那么这个byte很有可能是属于”data”,而非”metadata”(例如size, flag等),对整个fuzzing的意义不大。所以,在随后的一些变异中,会参考effector map,跳过那些“无效”的byte,从而节省了执行资源。
由此,通过极小的开销(没有增加额外的执行次数),AFL又一次对文件格式进行了启发式的判断。看到这里,不得不叹服于AFL实现上的精妙。
不过,在某些情况下并不会检测有效字符。第一种情况就是dumb mode或者从fuzzer,此时文件所有的字符都有可能被变异。第二、第三种情况与文件本身有关:
设置stage_name为bitflip 8/8,以字节为单位,其不是通过FILP宏来做翻转直接通过和0xff亦或运算去翻转整个字节的位,然后执行一次,并记录。
stage_name = "bitflip 8/8";
stage_short = "flip8";
stage_max = len;
orig_hit_cnt = new_hit_cnt;
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
stage_cur_byte = stage_cur;
out_buf[stage_cur] ^= 0xFF;直接通过对于out_buf的每一个字节中的每一个bit做异或翻转
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;//运行对应的test case(翻转后)
if (!eff_map[EFF_APOS(stage_cur)]) {//如果eff_map[stage_cur>>3]为0的话
//EFF_APOS宏也起到了一个将stage_cur>>3的效果
u32 cksum;
/* If in dumb mode or if the file is very short, just flag everything
without wasting time on checksums. */
if (!dumb_mode && len >= EFF_MIN_LEN)
cksum = hash32(trace_bits, MAP_SIZE, HASH_CONST);
else
cksum = ~queue_cur->exec_cksum;
if (cksum != queue_cur->exec_cksum) {
eff_map[EFF_APOS(stage_cur)] = 1;
//产生新的路径,发生了变化,此时直接将对应的eff_map中的项标记为1
eff_cnt++;
}
}
out_buf[stage_cur] ^= 0xFF;重新异或回来
}
/*如果效应器贴图比EFF_MAX_PERC密集,只需将整个事情标记为值得模糊,因为我们无论如何都不会节省太多时间*/
if (eff_cnt != EFF_ALEN(len) &&
eff_cnt * 100 / EFF_ALEN(len) > EFF_MAX_PERC) {
memset(eff_map, 1, EFF_ALEN(len));
blocks_eff_select += EFF_ALEN(len);
} else {
blocks_eff_select += eff_cnt;
}
blocks_eff_total += EFF_ALEN(len);
更新new_hit_cnt、stage_finds[STAGE_FLIP8]、stage_cycles[STAGE_FLIP8]
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_FLIP8] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_FLIP8] += stage_max;
/* Two walking bytes. */
if (len < 2) goto skip_bitflip;如果len<2,直接跳到skip_bitflip
stage_name = "bitflip 16/8";进入"bitflip 16/8"
stage_short = "flip16";
stage_cur = 0;
stage_max = len - 1;设置stage_max为len - 1,以字为单位和0xffff进行亦或运算,去翻转相邻的两个字节(即一个字的)的位
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len - 1; i++) {
/* Let's consult the effector map... */
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {唯一不同的是,在异或变异之前先检查了对应的eff_map的对应两个字节是否为0
stage_max--;如果是0,stage_max计数减1.然后continue跳过
continue;
否则进行异或翻转后运行。
}
stage_cur_byte = i;
*(u16*)(out_buf + i) ^= 0xFFFF;
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
*(u16*)(out_buf + i) ^= 0xFFFF;
}
更新这些变量
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_FLIP16] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_FLIP16] += stage_max;
if (len < 4) goto skip_bitflip;如果len<4,跳转到skip_bitflip
/* Four walking bytes. */"bitflip 32/8",与上述基本相同。
stage_name = "bitflip 32/8";
stage_short = "flip32";
stage_cur = 0;
stage_max = len - 3;
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len - 3; i++) {
/* Let's consult the effector map... */
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
stage_max--;
continue;
}
stage_cur_byte = i;
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
*(u32*)(out_buf + i) ^= 0xFFFFFFFF;
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_FLIP32] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_FLIP32] += stage_max;
skip_bitflip:
if (no_arith) goto skip_arith;
/**********************
* ARITHMETIC INC/DEC *
**********************/
在bitflip变异全部进行完成后,便进入下一个阶段:arithmetic。与bitflip类似的是,arithmetic根据目标大小的不同,也分为了多个子阶段:
/* 8-bit arithmetics. */八位算数
arith 8/8,每次对8个bit进行加减运算,按照每8个bit的步长从头开始,即对文件的每个byte进行整数加减变异
stage_name = "arith 8/8";
stage_short = "arith8";
stage_cur = 0;
stage_max = 2 * len * ARITH_MAX;
stage_val_type = STAGE_VAL_LE;
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len; i++) {
u8 orig = out_buf[i];首先扫描out_buf,(此时一个orig是一个字节,此阶段是按字节扫描)
if (!eff_map[EFF_APOS(i)]) {
如果对应的eff_map中的项为0,则stage_max减去2倍的ARITH_MAX,然后continue跳过此次变异
stage_max -= 2 * ARITH_MAX;
continue;
}
stage_cur_byte = i;
在config.h中的宏ARITH_MAX定义,默认为35.所以,对目标整数会进行+1, +2, …, +35, -1, -2, …, -35的变异。特别地,由于整数存在大端序和小端序两种表示方式,AFL会贴心地对这两种整数表示方式都进行变异。
for (j = 1; j <= ARITH_MAX; j++) {//依次扫描orig到orig+35
u8 r = orig ^ (orig + j); //将orig与orig+j(j最大为35)进行异或翻转
/* Do arithmetic operations only if the result couldn't be a product
of a bitflip. */
if (!could_be_bitflip(r)) {
//判断是否为可以通过上一阶段bitfilp得到的(这一步是为了防止相同的冗余变异,节省时间)
stage_cur_val = j;
out_buf[i] = orig + j;//将out_buf[i]本身加j变异
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;进行fuzz
stage_cur++;
} else stage_max--;//否则stage_max减1
r = orig ^ (orig - j); //将orig与orig-j(j最大为35)进行异或翻转
if (!could_be_bitflip(r)) {//如果判断为可以bitfilp
stage_cur_val = -j;
out_buf[i] = orig - j;//将out_buf[i]本身减j变异
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;进行fuzz
stage_cur++;
} else stage_max--;//将out_buf[i]本身加j变异
out_buf[i] = orig;
}
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_ARITH8] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_ARITH8] += stage_max;
/* 16-bit arithmetics, both endians. */
arith 16/8,每次对16个bit进行加减运算,按照每8个bit的步长从头开始,即对文件的每个word进行整数加减变异
if (len < 2) goto skip_arith;
stage_name = "arith 16/8";
stage_short = "arith16";
stage_cur = 0;
stage_max = 4 * (len - 1) * ARITH_MAX;
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len - 1; i++) {
u16 orig = *(u16*)(out_buf + i);
/* Let's consult the effector map... */
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
stage_max -= 4 * ARITH_MAX;
continue;
}
stage_cur_byte = i;
for (j = 1; j <= ARITH_MAX; j++) {
u16 r1 = orig ^ (orig + j),
r2 = orig ^ (orig - j),
r3 = orig ^ SWAP16(SWAP16(orig) + j),
r4 = orig ^ SWAP16(SWAP16(orig) - j);
/* Try little endian addition and subtraction first. Do it only
if the operation would affect more than one byte (hence the
& 0xff overflow checks) and if it couldn't be a product of
a bitflip. */
stage_val_type = STAGE_VAL_LE;
if ((orig & 0xff) + j > 0xff && !could_be_bitflip(r1)) {
stage_cur_val = j;
*(u16*)(out_buf + i) = orig + j;
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
if ((orig & 0xff) < j && !could_be_bitflip(r2)) {
stage_cur_val = -j;
*(u16*)(out_buf + i) = orig - j;
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
/* Big endian comes next. Same deal. */
stage_val_type = STAGE_VAL_BE;
if ((orig >> 8) + j > 0xff && !could_be_bitflip(r3)) {
stage_cur_val = j;
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) + j);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
if ((orig >> 8) < j && !could_be_bitflip(r4)) {
stage_cur_val = -j;
*(u16*)(out_buf + i) = SWAP16(SWAP16(orig) - j);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
*(u16*)(out_buf + i) = orig;
}
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_ARITH16] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_ARITH16] += stage_max;
/* 32-bit arithmetics, both endians. */
arith 32/8,每次对32个bit进行加减运算,按照每8个bit的步长从头开始,即对文件的每个dword进行整数加减变异
if (len < 4) goto skip_arith;
stage_name = "arith 32/8";
stage_short = "arith32";
stage_cur = 0;
stage_max = 4 * (len - 3) * ARITH_MAX;
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len - 3; i++) {
u32 orig = *(u32*)(out_buf + i);
/* Let's consult the effector map... */
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
stage_max -= 4 * ARITH_MAX;
continue;
}
stage_cur_byte = i;
for (j = 1; j <= ARITH_MAX; j++) {
u32 r1 = orig ^ (orig + j),
r2 = orig ^ (orig - j),
r3 = orig ^ SWAP32(SWAP32(orig) + j),
r4 = orig ^ SWAP32(SWAP32(orig) - j);
/* Little endian first. Same deal as with 16-bit: we only want to
try if the operation would have effect on more than two bytes. */
stage_val_type = STAGE_VAL_LE;
if ((orig & 0xffff) + j > 0xffff && !could_be_bitflip(r1)) {
stage_cur_val = j;
*(u32*)(out_buf + i) = orig + j;
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
if ((orig & 0xffff) < j && !could_be_bitflip(r2)) {
stage_cur_val = -j;
*(u32*)(out_buf + i) = orig - j;
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
/* Big endian next. */
stage_val_type = STAGE_VAL_BE;
if ((SWAP32(orig) & 0xffff) + j > 0xffff && !could_be_bitflip(r3)) {
stage_cur_val = j;
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) + j);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
if ((SWAP32(orig) & 0xffff) < j && !could_be_bitflip(r4)) {
stage_cur_val = -j;
*(u32*)(out_buf + i) = SWAP32(SWAP32(orig) - j);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
*(u32*)(out_buf + i) = orig;
}
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_ARITH32] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_ARITH32] += stage_max;
skip_arith:
/**********************
* INTERESTING VALUES *用于替换的”interesting values”,是AFL预设的一些比较特殊的数,这些数的定义在config.h文件中
**********************/
interest 8/8,每次对8个bit进替换,按照每8个bit的步长从头开始,即对文件的每个byte进行替换变异
stage_name = "interest 8/8";
stage_short = "int8";
stage_cur = 0;
stage_max = len * sizeof(interesting_8);
stage_val_type = STAGE_VAL_LE;
orig_hit_cnt = new_hit_cnt;
/* Setting 8-bit integers. */
for (i = 0; i < len; i++) {
u8 orig = out_buf[i];
/* Let's consult the effector map... */
if (!eff_map[EFF_APOS(i)]) {
stage_max -= sizeof(interesting_8);
continue;
}
stage_cur_byte = i;
for (j = 0; j < sizeof(interesting_8); j++) {
/* Skip if the value could be a product of bitflips or arithmetics. */
if (could_be_bitflip(orig ^ (u8)interesting_8[j]) ||
could_be_arith(orig, (u8)interesting_8[j], 1)) {
保证替换不会由前面的异或和加减变异阶段得到(本质是在防止冗余变换,减小开销)
stage_max--;
continue;
}
stage_cur_val = interesting_8[j];
out_buf[i] = interesting_8[j];然后通过out_buf[i] = interesting_8[j]进行一个字节的替换。
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;调用common_fuzz_stuff(argv, out_buf, len)进行fuzz
out_buf[i] = orig;
stage_cur++;
}
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_INTEREST8] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_INTEREST8] += stage_max;
/* Setting 16-bit integers, both endians. */
if (no_arith || len < 2) goto skip_interest;
"interest 16/8"阶段,以两个字节为单位进行替换变异,并且去除异或、加减、与单字节变异阶段的冗余,同时考虑大小端序
stage_name = "interest 16/8";
stage_short = "int16";
stage_cur = 0;
stage_max = 2 * (len - 1) * (sizeof(interesting_16) >> 1);
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len - 1; i++) {
u16 orig = *(u16*)(out_buf + i);
/* Let's consult the effector map... */
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)]) {
stage_max -= sizeof(interesting_16);
continue;
}
stage_cur_byte = i;
for (j = 0; j < sizeof(interesting_16) / 2; j++) {
stage_cur_val = interesting_16[j];
/* Skip if this could be a product of a bitflip, arithmetics,
or single-byte interesting value insertion. */
if (!could_be_bitflip(orig ^ (u16)interesting_16[j]) &&
!could_be_arith(orig, (u16)interesting_16[j], 2) &&
!could_be_interest(orig, (u16)interesting_16[j], 2, 0)) {
stage_val_type = STAGE_VAL_LE;
*(u16*)(out_buf + i) = interesting_16[j];
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
if ((u16)interesting_16[j] != SWAP16(interesting_16[j]) &&
!could_be_bitflip(orig ^ SWAP16(interesting_16[j])) &&
!could_be_arith(orig, SWAP16(interesting_16[j]), 2) &&
!could_be_interest(orig, SWAP16(interesting_16[j]), 2, 1)) {
stage_val_type = STAGE_VAL_BE;
*(u16*)(out_buf + i) = SWAP16(interesting_16[j]);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
}
*(u16*)(out_buf + i) = orig;
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_INTEREST16] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_INTEREST16] += stage_max;
if (len < 4) goto skip_interest;
/* Setting 32-bit integers, both endians. */
interest 32/8,每次对32个bit进替换,按照每8个bit的步长从头开始,即对文件的每个dword进行替换
stage_name = "interest 32/8";
stage_short = "int32";
stage_cur = 0;
stage_max = 2 * (len - 3) * (sizeof(interesting_32) >> 2);
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len - 3; i++) {
u32 orig = *(u32*)(out_buf + i);
/* Let's consult the effector map... */
if (!eff_map[EFF_APOS(i)] && !eff_map[EFF_APOS(i + 1)] &&
!eff_map[EFF_APOS(i + 2)] && !eff_map[EFF_APOS(i + 3)]) {
stage_max -= sizeof(interesting_32) >> 1;
continue;
}
stage_cur_byte = i;
for (j = 0; j < sizeof(interesting_32) / 4; j++) {
stage_cur_val = interesting_32[j];
/* Skip if this could be a product of a bitflip, arithmetics,
or word interesting value insertion. */
if (!could_be_bitflip(orig ^ (u32)interesting_32[j]) &&
!could_be_arith(orig, interesting_32[j], 4) &&
!could_be_interest(orig, interesting_32[j], 4, 0)) {
stage_val_type = STAGE_VAL_LE;
*(u32*)(out_buf + i) = interesting_32[j];
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
if ((u32)interesting_32[j] != SWAP32(interesting_32[j]) &&
!could_be_bitflip(orig ^ SWAP32(interesting_32[j])) &&
!could_be_arith(orig, SWAP32(interesting_32[j]), 4) &&
!could_be_interest(orig, SWAP32(interesting_32[j]), 4, 1)) {
stage_val_type = STAGE_VAL_BE;
*(u32*)(out_buf + i) = SWAP32(interesting_32[j]);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
} else stage_max--;
}
*(u32*)(out_buf + i) = orig;
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_INTEREST32] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_INTEREST32] += stage_max;
skip_interest:
/********************
* DICTIONARY STUFF *字典之类的
********************/
if (!extras_cnt) goto skip_user_extras;
/* Overwrite with user-supplied extras. */用用户提供的附加内容覆盖
进入到这个阶段,就接近deterministic fuzzing的尾声了
本阶段主要基于用户提供的extra来进行一定的变异
stage_name = "user extras (over)";
user extras(over),从头开始,将用户提供的tokens依次替换到原文件中,stage_max为extras_cnt * len
stage_short = "ext_UO";
stage_cur = 0;
stage_max = extras_cnt * len;
stage_val_type = STAGE_VAL_NONE;
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len; i++) {
u32 last_len = 0;
stage_cur_byte = i;
for (j = 0; j < extras_cnt; j++) {
/*如果extras_cnt>MAX_DET_extras,则按概率跳过extras。如果没有空间插入有效负载,如果令牌是冗余的,或者如果其整个跨度在效应器映射中没有设置字节,也可以跳过它们*/
if ((extras_cnt > MAX_DET_EXTRAS && UR(extras_cnt) >= MAX_DET_EXTRAS) ||
extras[j].len > len - i ||
!memcmp(extras[j].data, out_buf + i, extras[j].len) ||
!memchr(eff_map + EFF_APOS(i), 1, EFF_SPAN_ALEN(i, extras[j].len))) {
stage_max--;
continue;
}
last_len = extras[j].len;
在满足一定大小的条件下(同时有一定随机性),将用户的extra token以memcpy的方式替换/覆写(over)进去,然后进行fuzz
memcpy(out_buf + i, extras[j].data, last_len);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
}
/* Restore all the clobbered memory. */
memcpy(out_buf + i, in_buf + i, last_len);
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_EXTRAS_UO] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_EXTRAS_UO] += stage_max;
/* Insertion of user-supplied extras. */
user extras(insert),从头开始,将用户提供的tokens依次插入到原文件中,stage_max为extras_cnt * len
stage_name = "user extras (insert)";
stage_short = "ext_UI";
stage_cur = 0;
stage_max = extras_cnt * (len + 1);
orig_hit_cnt = new_hit_cnt;
ex_tmp = ck_alloc(len + MAX_DICT_FILE);
for (i = 0; i <= len; i++) {
stage_cur_byte = i;
for (j = 0; j < extras_cnt; j++) {
if (len + extras[j].len > MAX_FILE) {
stage_max--;
continue;
}
/* Insert token */
memcpy(ex_tmp + i, extras[j].data, extras[j].len);
/* Copy tail */
memcpy(ex_tmp + i + extras[j].len, out_buf + i, len - i);
插入(insert)用户的extras[j],然后产生一个新的ex_tmp,对于这个ex_tmp进行fuzz。
if (common_fuzz_stuff(argv, ex_tmp, len + extras[j].len)) {
ck_free(ex_tmp);
goto abandon_entry;
}
stage_cur++;
}
/* Copy head */
ex_tmp[i] = out_buf[i];
}
ck_free(ex_tmp);
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_EXTRAS_UI] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_EXTRAS_UI] += stage_max;
skip_user_extras:
if (!a_extras_cnt) goto skip_extras;
auto extras(over),从头开始,将自动检测的tokens依次替换到原文件中,stage_max为MIN(a_extras_cnt, USE_AUTO_EXTRAS) * len
本阶段类似于over,只不过用于替换的变成了a_extras[j]而非extras[j]
stage_name = "auto extras (over)";
stage_short = "ext_AO";
stage_cur = 0;
stage_max = MIN(a_extras_cnt, USE_AUTO_EXTRAS) * len;
stage_val_type = STAGE_VAL_NONE;
orig_hit_cnt = new_hit_cnt;
for (i = 0; i < len; i++) {
u32 last_len = 0;
stage_cur_byte = i;
for (j = 0; j < MIN(a_extras_cnt, USE_AUTO_EXTRAS); j++) {
/* See the comment in the earlier code; extras are sorted by size. */
if (a_extras[j].len > len - i ||
!memcmp(a_extras[j].data, out_buf + i, a_extras[j].len) ||
!memchr(eff_map + EFF_APOS(i), 1, EFF_SPAN_ALEN(i, a_extras[j].len))) {
stage_max--;
continue;
}
last_len = a_extras[j].len;
memcpy(out_buf + i, a_extras[j].data, last_len);
if (common_fuzz_stuff(argv, out_buf, len)) goto abandon_entry;
stage_cur++;
}
/* Restore all the clobbered memory. */
memcpy(out_buf + i, in_buf + i, last_len);
}
new_hit_cnt = queued_paths + unique_crashes;
stage_finds[STAGE_EXTRAS_AO] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_EXTRAS_AO] += stage_max;
skip_extras:
如果我们在不跳至havoc_stage或abandon_entry的情况下来到这里,说明我们已经正确的完成了确定的fuzz(deterministic steps)步骤,我们可以对其进行标记如 .state/ 目录
if (!queue_cur->passed_det)如果没有设置queue_cur->passed_det
mark_as_det_done(queue_cur);调用mark_as_det_done(queue_cur)进行标记。
/****************
* RANDOM HAVOC *随机毁灭阶段;本阶段做大范围的随即变异
****************/
对于非dumb mode的主fuzzer来说,完成了上述deterministic fuzzing后,便进入了充满随机性的这一阶段;对于dumb mode或者从fuzzer来说,则是直接从这一阶段开始
havoc_stage:
stage_cur_byte = -1;
/*拼接文件时也会调用毁灭阶段突变代码;如果设置了splice_cycle变量,则生成不同的描述等*/
if (!splice_cycle) {如果没有设置splice_cycle
stage_name = "havoc";那么标记此阶段为“havoc”
stage_short = "havoc";
stage_max = (doing_det ? HAVOC_CYCLES_INIT : HAVOC_CYCLES) *
perf_score / havoc_div / 100;
} else {
static u8 tmp[32];
perf_score = orig_perf;
sprintf(tmp, "splice %u", splice_cycle);
stage_name = tmp;
stage_short = "splice";否则此阶段为“splice”
stage_max = SPLICE_HAVOC * perf_score / havoc_div / 100;
}
if (stage_max < HAVOC_MIN) stage_max = HAVOC_MIN;
temp_len = len;
orig_hit_cnt = queued_paths + unique_crashes;
havoc_queued = queued_paths;
/*我们基本上只需要运行几千次(取决于perf_score),然后获取输入文件并进行随机叠加调整*/
for (stage_cur = 0; stage_cur < stage_max; stage_cur++) {
u32 use_stacking = 1 << (1 + UR(HAVOC_STACK_POW2));在每一轮stage中首先产生随机数use_stacking
stage_cur_val = use_stacking;
根据产生的use_stacking做相应次数的变换。相当于每一轮stage中具体的变换由多次小变化叠加产生。
for (i = 0; i < use_stacking; i++) {
switch (UR(15 + ((extras_cnt + a_extras_cnt) ? 2 : 0))) {每次变换具体的内容也由一个随机数决定。
case 0:
/* Flip a single bit somewhere. Spooky! */
FLIP_BIT(out_buf, UR(temp_len << 3));
break;
case 1:
/* Set byte to interesting value. */
out_buf[UR(temp_len)] = interesting_8[UR(sizeof(interesting_8))];随机替换一个interesting_8[]中的byte进来
break;
case 2:
/* Set word to interesting value, randomly choosing endian. */
if (temp_len < 2) break;
if (UR(2)) {
*(u16*)(out_buf + UR(temp_len - 1)) =
interesting_16[UR(sizeof(interesting_16) >> 1)];
随机替换interesting_16[]中的某个word进来(大小端序随机选择)
} else {
*(u16*)(out_buf + UR(temp_len - 1)) = SWAP16(
interesting_16[UR(sizeof(interesting_16) >> 1)]);
}
break;
case 3:
/* Set dword to interesting value, randomly choosing endian. */
if (temp_len < 4) break;
if (UR(2)) {
*(u32*)(out_buf + UR(temp_len - 3)) =
interesting_32[UR(sizeof(interesting_32) >> 2)];
随机替换interesting_32[]中的某个dword进来(大小端序随机选择)
} else {
*(u32*)(out_buf + UR(temp_len - 3)) = SWAP32(
interesting_32[UR(sizeof(interesting_32) >> 2)]);
}
break;
case 4:
/* Randomly subtract from byte. */
out_buf[UR(temp_len)] -= 1 + UR(ARITH_MAX);随机选取out_buf[]中某个byte进行减变异(减随机数)
break;
case 5:
/* Randomly add to byte. */
out_buf[UR(temp_len)] += 1 + UR(ARITH_MAX);随机选取out_buf[]中某个byte进行加变异(加随机数)
break;
case 6:
/* Randomly subtract from word, random endian. */
if (temp_len < 2) break;
if (UR(2)) {
u32 pos = UR(temp_len - 1);
*(u16*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
随机选取out_buf[]中某个word进行减变异(减随机数,大小端序随机选择)
} else {
u32 pos = UR(temp_len - 1);
u16 num = 1 + UR(ARITH_MAX);
*(u16*)(out_buf + pos) =
SWAP16(SWAP16(*(u16*)(out_buf + pos)) - num);
}
break;
case 7:
/* Randomly add to word, random endian. */
if (temp_len < 2) break;
if (UR(2)) {
u32 pos = UR(temp_len - 1);
*(u16*)(out_buf + pos) += 1 + UR(ARITH_MAX);
随机选取out_buf[]中某个word进行加变异(加随机数,大小端序随机选择)
} else {
u32 pos = UR(temp_len - 1);
u16 num = 1 + UR(ARITH_MAX);
*(u16*)(out_buf + pos) =
SWAP16(SWAP16(*(u16*)(out_buf + pos)) + num);
}
break;
case 8:
/* Randomly subtract from dword, random endian. */
if (temp_len < 4) break;
if (UR(2)) {
u32 pos = UR(temp_len - 3);
*(u32*)(out_buf + pos) -= 1 + UR(ARITH_MAX);
随机选取out_buf[]中某个dword进行减变异(减随机数,大小端序随机选择)
} else {
u32 pos = UR(temp_len - 3);
u32 num = 1 + UR(ARITH_MAX);
*(u32*)(out_buf + pos) =
SWAP32(SWAP32(*(u32*)(out_buf + pos)) - num);
}
break;
case 9:
/* Randomly add to dword, random endian. */
if (temp_len < 4) break;
if (UR(2)) {
u32 pos = UR(temp_len - 3);
*(u32*)(out_buf + pos) += 1 + UR(ARITH_MAX);
随机选取out_buf[]中某个dword进行加变异(加随机数,大小端序随机选择)
} else {
u32 pos = UR(temp_len - 3);
u32 num = 1 + UR(ARITH_MAX);
*(u32*)(out_buf + pos) =
SWAP32(SWAP32(*(u32*)(out_buf + pos)) + num);
}
break;
case 10:
/* Just set a random byte to a random value. Because,
why not. We use XOR with 1-255 to eliminate the
possibility of a no-op. */
out_buf[UR(temp_len)] ^= 1 + UR(255);随机选取out_buf[]中某个byte进行异或翻转变异
break;
case 11 ... 12: {
/* Delete bytes. We're making this a bit more likely
than insertion (the next option) in hopes of keeping
files reasonably small. */
u32 del_from, del_len;
if (temp_len < 2) break;
/* Don't delete too much. */
del_len = choose_block_len(temp_len - 1);
del_from = UR(temp_len - del_len + 1);
memmove(out_buf + del_from, out_buf + del_from + del_len,
temp_len - del_from - del_len);随机选取out_buf[]中某个byte进行删除
temp_len -= del_len;
break;
}
case 13:
随机选取out_buf[]中某个位置插入一段随机长度clone_to = UR(temp_len)的内容。这段内容有75%的概率是原来out_buf[]中的内容;有25%的概率是一段相同的随机选取的数字。(这串随机选取的数字有50%的几率随机生成,有50%的几率从out_buf中选一个字节)
if (temp_len + HAVOC_BLK_XL < MAX_FILE) {
/* Clone bytes (75%) or insert a block of constant bytes (25%). */
u8 actually_clone = UR(4);
u32 clone_from, clone_to, clone_len;
u8* new_buf;
if (actually_clone) {
clone_len = choose_block_len(temp_len);
clone_from = UR(temp_len - clone_len + 1);
} else {
clone_len = choose_block_len(HAVOC_BLK_XL);
clone_from = 0;
}
clone_to = UR(temp_len);
new_buf = ck_alloc_nozero(temp_len + clone_len);
/* Head */
memcpy(new_buf, out_buf, clone_to);
/* Inserted part */
if (actually_clone)
memcpy(new_buf + clone_to, out_buf + clone_from, clone_len);
else
memset(new_buf + clone_to,
UR(2) ? UR(256) : out_buf[UR(temp_len)], clone_len);
/* Tail */
memcpy(new_buf + clone_to + clone_len, out_buf + clone_to,
temp_len - clone_to);
ck_free(out_buf);
out_buf = new_buf;
temp_len += clone_len;
}
break;
case 14: {
/* Overwrite bytes with a randomly selected chunk (75%) or fixed
bytes (25%). */
随机选取out_buf[]中某个位置覆写一段随机长度的内容。这段内容有75%的概率是原来out_buf[]中的内容;有25%的概率是一段相同的随机选取的数字。(这串随机选取的数字有50%的几率随机生成,有50%的几率从out_buf中选一个字节)
u32 copy_from, copy_to, copy_len;
if (temp_len < 2) break;
copy_len = choose_block_len(temp_len - 1);
copy_from = UR(temp_len - copy_len + 1);
copy_to = UR(temp_len - copy_len + 1);
if (UR(4)) {
if (copy_from != copy_to)
memmove(out_buf + copy_to, out_buf + copy_from, copy_len);
} else memset(out_buf + copy_to,
UR(2) ? UR(256) : out_buf[UR(temp_len)], copy_len);
break;
}
/* Values 15 and 16 can be selected only if there are any extras
present in the dictionaries. */
case 15: {
随机选取一段内容覆写成extra token
a_extras[use_extra].data或者extras[use_extra].data
/* Overwrite bytes with an extra. */
if (!extras_cnt || (a_extras_cnt && UR(2))) {
/* No user-specified extras or odds in our favor. Let's use an
auto-detected one. */
u32 use_extra = UR(a_extras_cnt);
u32 extra_len = a_extras[use_extra].len;
u32 insert_at;
if (extra_len > temp_len) break;
insert_at = UR(temp_len - extra_len + 1);
memcpy(out_buf + insert_at, a_extras[use_extra].data, extra_len);
} else {
/* No auto extras or odds in our favor. Use the dictionary. */
u32 use_extra = UR(extras_cnt);
u32 extra_len = extras[use_extra].len;
u32 insert_at;
if (extra_len > temp_len) break;
insert_at = UR(temp_len - extra_len + 1);
memcpy(out_buf + insert_at, extras[use_extra].data, extra_len);
}
break;
}
case 16: {
随机选取一段内容插入extra token
a_extras[use_extra].data或者extras[use_extra].data
u32 use_extra, extra_len, insert_at = UR(temp_len + 1);
u8* new_buf;
/* Insert an extra. Do the same dice-rolling stuff as for the
previous case. */
if (!extras_cnt || (a_extras_cnt && UR(2))) {
use_extra = UR(a_extras_cnt);
extra_len = a_extras[use_extra].len;
if (temp_len + extra_len >= MAX_FILE) break;
new_buf = ck_alloc_nozero(temp_len + extra_len);
/* Head */
memcpy(new_buf, out_buf, insert_at);
/* Inserted part */
memcpy(new_buf + insert_at, a_extras[use_extra].data, extra_len);
} else {
use_extra = UR(extras_cnt);
extra_len = extras[use_extra].len;
if (temp_len + extra_len >= MAX_FILE) break;
new_buf = ck_alloc_nozero(temp_len + extra_len);
/* Head */
memcpy(new_buf, out_buf, insert_at);
/* Inserted part */
memcpy(new_buf + insert_at, extras[use_extra].data, extra_len);
}
/* Tail */
memcpy(new_buf + insert_at + extra_len, out_buf + insert_at,
temp_len - insert_at);
ck_free(out_buf);
out_buf = new_buf;
temp_len += extra_len;
break;
}
}
}
至此,叠加变化结束,调用common_fuzz_stuff(argv, out_buf, temp_len)对进行这些随机大变换后的进行fuzz。
if (common_fuzz_stuff(argv, out_buf, temp_len))
goto abandon_entry;
/* out_buf might have been mangled a bit, so let's restore it to its
original size and shape. */
if (temp_len < len) out_buf = ck_realloc(out_buf, len);
temp_len = len;
memcpy(out_buf, in_buf, len);
/* If we're finding new stuff, let's run for a bit longer, limits
permitting. */
如果fuzz后的queued_paths与havoc_queued不一样了,说明发现了新路径,更新stage_max、perf_score、havoc_queued
if (queued_paths != havoc_queued) {
if (perf_score <= HAVOC_MAX_MULT * 100) {
stage_max *= 2;
perf_score *= 2;
}
havoc_queued = queued_paths;
}
}
new_hit_cnt = queued_paths + unique_crashes;
if (!splice_cycle) {
stage_finds[STAGE_HAVOC] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_HAVOC] += stage_max;
} else {
stage_finds[STAGE_SPLICE] += new_hit_cnt - orig_hit_cnt;
stage_cycles[STAGE_SPLICE] += stage_max;
}
#ifndef IGNORE_FINDS
/************
* SPLICING *
************/
当没有define IGNORE_FINDS时。如果我们经过了一整轮什么都没有发现,那么afl会进入retry_splicing:这里进一步的对于输入样本进行变换,通过拼接另一个输入样本来完成此变换,最后又跳回havoc_stage上一阶段进行大范围的随机变换。
/*这是一个最后的策略,由一轮没有结果的投票触发。它获取当前输入文件,随机选择另一个输入,并在某个偏移量处将它们拼接在一起,然后依赖毁灭代码来变异该blob*/
retry_splicing:
if (use_splicing && splice_cycle++ < SPLICE_CYCLES &&
queued_paths > 1 && queue_cur->len > 1) {
struct queue_entry* target;
u32 tid, split_at;
u8* new_buf;
s32 f_diff, l_diff;
/* First of all, if we've modified in_buf for havoc, let's clean that
up... */
if (in_buf != orig_in) {
ck_free(in_buf);
in_buf = orig_in;
len = queue_cur->len;
}
/* Pick a random queue entry and seek to it. Don't splice with yourself. */
do { tid = UR(queued_paths); } while (tid == current_entry);
splicing_with = tid;
target = queue;
while (tid >= 100) { target = target->next_100; tid -= 100; }
while (tid--) target = target->next;
/* Make sure that the target has a reasonable length. */
while (target && (target->len < 2 || target == queue_cur)) {
target = target->next;
splicing_with++;
}
if (!target) goto retry_splicing;
/* Read the testcase into a new buffer. */
fd = open(target->fname, O_RDONLY);
if (fd < 0) PFATAL("Unable to open '%s'", target->fname);
new_buf = ck_alloc_nozero(target->len);
ck_read(fd, new_buf, target->len, target->fname);
close(fd);
/* Find a suitable splicing location, somewhere between the first and
the last differing byte. Bail out if the difference is just a single
byte or so. */
locate_diffs(in_buf, new_buf, MIN(len, target->len), &f_diff, &l_diff);
if (f_diff < 0 || l_diff < 2 || f_diff == l_diff) {
ck_free(new_buf);
goto retry_splicing;
}
/* Split somewhere between the first and last differing byte. */
split_at = f_diff + UR(l_diff - f_diff);
/* Do the thing. */
len = target->len;
memcpy(new_buf, in_buf, split_at);
in_buf = new_buf;
ck_free(out_buf);
out_buf = ck_alloc_nozero(len);
memcpy(out_buf, in_buf, len);
goto havoc_stage;
}
#endif /* !IGNORE_FINDS */
ret_val = 0;否则设置ret_val = 0
abandon_entry:到达abandon_entry:
splicing_with = -1;
/* Update pending_not_fuzzed count if we made it through the calibration
cycle and have not seen this entry before. */
对于队列当前项信息更新。
if (!stop_soon && !queue_cur->cal_failed && !queue_cur->was_fuzzed) {
如果未设置stop_soon且queue_cur->cal_failed为0,queue_cur->was_fuzzed未被标记已经fuzz过
queue_cur->was_fuzzed = 1;标记queue_cur->was_fuzzed为已经fuzz过了
pending_not_fuzzed--;pending_not_fuzzed计数减1
if (queue_cur->favored) pending_favored--;如果当前对象是favored,那么pending_favored计数也减1
}
munmap(orig_in, queue_cur->len);
if (in_buf != orig_in) ck_free(in_buf);
ck_free(out_buf);
ck_free(eff_map);
return ret_val;
#undef FLIP_BIT
}