spark-shell是REPL(Read-Eval-Print Loop,交互式解释器),它为我们提供了交互式执行环境,表达式计算完成以后就会立即输出结果,而不必等到整个程序运行完毕,因此可以及时查看中间结果并对程序进行修改,这样可以在很大程度上提升程序开发效率。spark-shell
支持Scala
和Python
,Spark
框架使用Scala
语言开发的,使用spark-shell
命令会默认进入Scala
的交互式执行环境。如果要进入Python
的交互式执行环境,则需要执行pyspark
命令。
在Linux终端中运行spark-shell命令,就可以启动进入spark-shell交互式执行环境。spark-shell命令及其常用参数如下:
./bin/spark-shell --master <master-url>
Spark的运行环境取决于传递给SparkContext的的值。可以是表中的任一形式。
含义 | |
---|---|
local | 使用一个Worker线程本地化运行Spark(完全不并行) |
local[*] | 使用与逻辑CPU个数相同数量的线程来本地化运行Spark(“逻辑CPU个数”等于“物理CPU个数”乘以“每个物理CPU包含的CPU核数”) |
local[K] | |
spark://HOST:PORT | |
yarn-client | |
yarn-cluster | |
mesos://HOST:PORT |
在Spark中采用Local模型启动spark-shell的命令主要包含以下参数:
master
这个参数表示当前的spark-shell要连接到哪个Master
,如果是local[*]
,就是使用Local模式(单机模式)启动spark-shell,中括号内的星号表示需要几个CPU核心(Core),也就是启动几个线程模拟Spark集群;
jars
这个参数用于把相关的JAR包添加到CLASSPATH中,如果有多个Jar包,可以使用逗号分隔符连接它们。
./bin/spark-shell --help
Usage: ./bin/spark-shell [options]
Options:
--master MASTER_URL spark://host:port, mesos://host:port, yarn, or local.
--deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or
on one of the worker machines inside the cluster ("cluster")
(Default: client).
--class CLASS_NAME Your application's main class (for Java / Scala apps).
--name NAME A name of your application.
--jars JARS Comma-separated list of local jars to include on the driver
and executor classpaths.
--packages Comma-separated list of maven coordinates of jars to include
on the driver and executor classpaths. Will search the local
maven repo, then maven central and any additional remote
repositories given by --repositories. The format for the
coordinates should be groupId:artifactId:version.
--exclude-packages Comma-separated list of groupId:artifactId, to exclude while
resolving the dependencies provided in --packages to avoid
dependency conflicts.
--repositories Comma-separated list of additional remote repositories to
search for the maven coordinates given with --packages.
--py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to place
on the PYTHONPATH for Python apps.
--files FILES Comma-separated list of files to be placed in the working
directory of each executor. File paths of these files
in executors can be accessed via SparkFiles.get(fileName).
--conf PROP=VALUE Arbitrary Spark configuration property.
--properties-file FILE Path to a file from which to load extra properties. If not
specified, this will look for conf/spark-defaults.conf.
--driver-memory MEM Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
--driver-java-options Extra Java options to pass to the driver.
--driver-library-path Extra library path entries to pass to the driver.
--driver-class-path Extra class path entries to pass to the driver. Note that
jars added with --jars are automatically included in the
classpath.
--executor-memory MEM Memory per executor (e.g. 1000M, 2G) (Default: 1G).
--proxy-user NAME User to impersonate when submitting the application.
This argument does not work with --principal / --keytab.
--help, -h Show this help message and exit.
--verbose, -v Print additional debug output.
--version, Print the version of current Spark.
Spark standalone with cluster deploy mode only:
--driver-cores NUM Cores for driver (Default: 1).
Spark standalone or Mesos with cluster deploy mode only:
--supervise If given, restarts the driver on failure.
--kill SUBMISSION_ID If given, kills the driver specified.
--status SUBMISSION_ID If given, requests the status of the driver specified.
Spark standalone and Mesos only:
--total-executor-cores NUM Total cores for all executors.
Spark standalone and YARN only:
--executor-cores NUM Number of cores per executor. (Default: 1 in YARN mode,
or all available cores on the worker in standalone mode)
YARN-only:
--driver-cores NUM Number of cores used by the driver, only in cluster mode
(Default: 1).
--queue QUEUE_NAME The YARN queue to submit to (Default: "default").
--num-executors NUM Number of executors to launch (Default: 2).
If dynamic allocation is enabled, the initial number of
executors will be at least NUM.
--archives ARCHIVES Comma separated list of archives to be extracted into the
working directory of each executor.
--principal PRINCIPAL Principal to be used to login to KDC, while running on
secure HDFS.
--keytab KEYTAB The full path to the file that contains the keytab for the
principal specified above. This keytab will be copied to
the node running the Application Master via the Secure
Distributed Cache, for renewing the login tickets and the
delegation tokens periodically.
进入spark
程序根目录
cd /use/local/spark
./bin/spark-shell --master local[4]
./bin/spark-shell --master local[4] --jars code.jar
当使用spark-shell命令没有带上任何参数时,默认使用Local[*]
模式启动进入spark-shell交互式执行环境。
spark-shell
本身就是一个Driver
,Driver
会生成一个SparkContext
对象。
SparkContext
Spark context available as 'sc' (master = local[*], app id = local-1617853048872).
SparkSession
Spark session available as 'spark'.
./bin/spark-shell
启动界面
[root@hadoop spark]# ./bin/spark-shell
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
21/04/08 11:37:27 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary.
21/04/08 11:37:34 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
Spark context Web UI available at http://192.168.174.134:4040
Spark context available as 'sc' (master = local[*], app id = local-1617853048872).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.2.0
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_152)
Type in expressions to have them evaluated.
Type :help for more information.
scala> :quit
[root@hadoop spark]#
:quit
Ctrl+D
上传Jar包
进入Spark安装目录
执行以下命令
sh ./bin/spark-submit --class com.spark.WordCount /home/myjar/hotel.jar