当前位置: 首页 > 工具软件 > FFT > 使用案例 >

ifft算法java_FFT 算法

甘兴学
2023-12-01

FFT即Fast Fourier Transform,中文翻译:快速傅立叶算法。下面是网上找到的算法实现。留以备用。

/******************************************************************************

* Compilation: javac FFT.java

* Execution: java FFT n

* Dependencies: Complex.java

*

* Compute the FFT and inverse FFT of a length n complex sequence.

* Bare bones implementation that runs in O(n log n) time. Our goal

* is to optimize the clarity of the code, rather than performance.

*

* Limitations

* -----------

* - assumes n is a power of 2

*

* - not the most memory efficient algorithm (because it uses

* an object type for representing complex numbers and because

* it re-allocates memory for the subarray, instead of doing

* in-place or reusing a single temporary array)

*

******************************************************************************/

public class FFT {

// compute the FFT of x[], assuming its length is a power of 2

public static Complex[] fft(Complex[] x) {

int n = x.length;

// base case

if (n == 1) return new Complex[] { x[0] };

// radix 2 Cooley-Tukey FFT

if (n % 2 != 0) { throw new RuntimeException("n is not a power of 2"); }

// fft of even terms

Complex[] even = new Complex[n/2];

for (int k = 0; k < n/2; k++) {

even[k] = x[2*k];

}

Complex[] q = fft(even);

// fft of odd terms

Complex[] odd = even; // reuse the array

for (int k = 0; k < n/2; k++) {

odd[k] = x[2*k + 1];

}

Complex[] r = fft(odd);

// combine

Complex[] y = new Complex[n];

for (int k = 0; k < n/2; k++) {

double kth = -2 * k * Math.PI / n;

Complex wk = new Complex(Math.cos(kth), Math.sin(kth));

y[k] = q[k].plus(wk.times(r[k]));

y[k + n/2] = q[k].minus(wk.times(r[k]));

}

return y;

}

// compute the inverse FFT of x[], assuming its length is a power of 2

public static Complex[] ifft(Complex[] x) {

int n = x.length;

Complex[] y = new Complex[n];

// take conjugate

for (int i = 0; i < n; i++) {

y[i] = x[i].conjugate();

}

// compute forward FFT

y = fft(y);

// take conjugate again

for (int i = 0; i < n; i++) {

y[i] = y[i].conjugate();

}

// divide by n

for (int i = 0; i < n; i++) {

y[i] = y[i].scale(1.0 / n);

}

return y;

}

// compute the circular convolution of x and y

public static Complex[] cconvolve(Complex[] x, Complex[] y) {

// should probably pad x and y with 0s so that they have same length

// and are powers of 2

if (x.length != y.length) { throw new RuntimeException("Dimensions don't agree"); }

int n = x.length;

// compute FFT of each sequence

Complex[] a = fft(x);

Complex[] b = fft(y);

// point-wise multiply

Complex[] c = new Complex[n];

for (int i = 0; i < n; i++) {

c[i] = a[i].times(b[i]);

}

// compute inverse FFT

return ifft(c);

}

// compute the linear convolution of x and y

public static Complex[] convolve(Complex[] x, Complex[] y) {

Complex ZERO = new Complex(0, 0);

Complex[] a = new Complex[2*x.length];

for (int i = 0; i < x.length; i++) a[i] = x[i];

for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;

Complex[] b = new Complex[2*y.length];

for (int i = 0; i < y.length; i++) b[i] = y[i];

for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;

return cconvolve(a, b);

}

// display an array of Complex numbers to standard output

public static void show(Complex[] x, String title) {

System.out.println(title);

System.out.println("-------------------");

for (int i = 0; i < x.length; i++) {

System.out.println(x[i]);

}

System.out.println();

}

/***************************************************************************

* Test client and sample execution

*

* % java FFT 4

* x

* -------------------

* -0.03480425839330703

* 0.07910192950176387

* 0.7233322451735928

* 0.1659819820667019

*

* y = fft(x)

* -------------------

* 0.9336118983487516

* -0.7581365035668999 + 0.08688005256493803i

* 0.44344407521182005

* -0.7581365035668999 - 0.08688005256493803i

*

* z = ifft(y)

* -------------------

* -0.03480425839330703

* 0.07910192950176387 + 2.6599344570851287E-18i

* 0.7233322451735928

* 0.1659819820667019 - 2.6599344570851287E-18i

*

* c = cconvolve(x, x)

* -------------------

* 0.5506798633981853

* 0.23461407150576394 - 4.033186818023279E-18i

* -0.016542951108772352

* 0.10288019294318276 + 4.033186818023279E-18i

*

* d = convolve(x, x)

* -------------------

* 0.001211336402308083 - 3.122502256758253E-17i

* -0.005506167987577068 - 5.058885073636224E-17i

* -0.044092969479563274 + 2.1934338938072244E-18i

* 0.10288019294318276 - 3.6147323062478115E-17i

* 0.5494685269958772 + 3.122502256758253E-17i

* 0.240120239493341 + 4.655566391833896E-17i

* 0.02755001837079092 - 2.1934338938072244E-18i

* 4.01805098805014E-17i

*

***************************************************************************/

public static void main(String[] args) {

int n = Integer.parseInt(args[0]);

Complex[] x = new Complex[n];

// original data

for (int i = 0; i < n; i++) {

x[i] = new Complex(i, 0);

x[i] = new Complex(-2*Math.random() + 1, 0);

}

show(x, "x");

// FFT of original data

Complex[] y = fft(x);

show(y, "y = fft(x)");

// take inverse FFT

Complex[] z = ifft(y);

show(z, "z = ifft(y)");

// circular convolution of x with itself

Complex[] c = cconvolve(x, x);

show(c, "c = cconvolve(x, x)");

// linear convolution of x with itself

Complex[] d = convolve(x, x);

show(d, "d = convolve(x, x)");

}

}

/******************************************************************************

* Compilation: javac Complex.java

* Execution: java Complex

*

* Data type for complex numbers.

*

* The data type is "immutable" so once you create and initialize

* a Complex object, you cannot change it. The "final" keyword

* when declaring re and im enforces this rule, making it a

* compile-time error to change the .re or .im instance variables after

* they've been initialized.

*

* % java Complex

* a = 5.0 + 6.0i

* b = -3.0 + 4.0i

* Re(a) = 5.0

* Im(a) = 6.0

* b + a = 2.0 + 10.0i

* a - b = 8.0 + 2.0i

* a * b = -39.0 + 2.0i

* b * a = -39.0 + 2.0i

* a / b = 0.36 - 1.52i

* (a / b) * b = 5.0 + 6.0i

* conj(a) = 5.0 - 6.0i

* |a| = 7.810249675906654

* tan(a) = -6.685231390246571E-6 + 1.0000103108981198i

*

******************************************************************************/

import java.util.Objects;

public class Complex {

private final double re; // the real part

private final double im; // the imaginary part

// create a new object with the given real and imaginary parts

public Complex(double real, double imag) {

re = real;

im = imag;

}

// return a string representation of the invoking Complex object

public String toString() {

if (im == 0) return re + "";

if (re == 0) return im + "i";

if (im < 0) return re + " - " + (-im) + "i";

return re + " + " + im + "i";

}

// return abs/modulus/magnitude

public double abs() {

return Math.hypot(re, im);

}

// return angle/phase/argument, normalized to be between -pi and pi

public double phase() {

return Math.atan2(im, re);

}

// return a new Complex object whose value is (this + b)

public Complex plus(Complex b) {

Complex a = this; // invoking object

double real = a.re + b.re;

double imag = a.im + b.im;

return new Complex(real, imag);

}

// return a new Complex object whose value is (this - b)

public Complex minus(Complex b) {

Complex a = this;

double real = a.re - b.re;

double imag = a.im - b.im;

return new Complex(real, imag);

}

// return a new Complex object whose value is (this * b)

public Complex times(Complex b) {

Complex a = this;

double real = a.re * b.re - a.im * b.im;

double imag = a.re * b.im + a.im * b.re;

return new Complex(real, imag);

}

// return a new object whose value is (this * alpha)

public Complex scale(double alpha) {

return new Complex(alpha * re, alpha * im);

}

// return a new Complex object whose value is the conjugate of this

public Complex conjugate() {

return new Complex(re, -im);

}

// return a new Complex object whose value is the reciprocal of this

public Complex reciprocal() {

double scale = re*re + im*im;

return new Complex(re / scale, -im / scale);

}

// return the real or imaginary part

public double re() { return re; }

public double im() { return im; }

// return a / b

public Complex divides(Complex b) {

Complex a = this;

return a.times(b.reciprocal());

}

// return a new Complex object whose value is the complex exponential of this

public Complex exp() {

return new Complex(Math.exp(re) * Math.cos(im), Math.exp(re) * Math.sin(im));

}

// return a new Complex object whose value is the complex sine of this

public Complex sin() {

return new Complex(Math.sin(re) * Math.cosh(im), Math.cos(re) * Math.sinh(im));

}

// return a new Complex object whose value is the complex cosine of this

public Complex cos() {

return new Complex(Math.cos(re) * Math.cosh(im), -Math.sin(re) * Math.sinh(im));

}

// return a new Complex object whose value is the complex tangent of this

public Complex tan() {

return sin().divides(cos());

}

// a static version of plus

public static Complex plus(Complex a, Complex b) {

double real = a.re + b.re;

double imag = a.im + b.im;

Complex sum = new Complex(real, imag);

return sum;

}

// See Section 3.3.

public boolean equals(Object x) {

if (x == null) return false;

if (this.getClass() != x.getClass()) return false;

Complex that = (Complex) x;

return (this.re == that.re) && (this.im == that.im);

}

// See Section 3.3.

public int hashCode() {

return Objects.hash(re, im);

}

// sample client for testing

public static void main(String[] args) {

Complex a = new Complex(5.0, 6.0);

Complex b = new Complex(-3.0, 4.0);

System.out.println("a = " + a);

System.out.println("b = " + b);

System.out.println("Re(a) = " + a.re());

System.out.println("Im(a) = " + a.im());

System.out.println("b + a = " + b.plus(a));

System.out.println("a - b = " + a.minus(b));

System.out.println("a * b = " + a.times(b));

System.out.println("b * a = " + b.times(a));

System.out.println("a / b = " + a.divides(b));

System.out.println("(a / b) * b = " + a.divides(b).times(b));

System.out.println("conj(a) = " + a.conjugate());

System.out.println("|a| = " + a.abs());

System.out.println("tan(a) = " + a.tan());

}

}

 类似资料: