ip2region v2.0 - 是一个离线IP地址定位库和IP定位数据管理框架,10微秒级别的查询效率,提供了众多主流编程语言的 xdb
数据生成和查询客户端实现。
支持Python、Java、Go 等多种主流开发语言,详情见首页
<dependency>
<groupId>org.lionsoul</groupId>
<artifactId>ip2region</artifactId>
<version>2.6.5</version>
</dependency>
import org.lionsoul.ip2region.xdb.Searcher;
import java.io.*;
import java.util.concurrent.TimeUnit;
public class SearcherTest {
public static void main(String[] args) {
// 1、创建 searcher 对象
String dbPath = "ip2region.xdb file path";
Searcher searcher = null;
try {
searcher = Searcher.newWithFileOnly(dbPath);
} catch (IOException e) {
System.out.printf("failed to create searcher with `%s`: %s\n", dbPath, e);
return;
}
// 2、查询
try {
String ip = "1.2.3.4";
long sTime = System.nanoTime();
String region = searcher.search(ip);
long cost = TimeUnit.NANOSECONDS.toMicros((long) (System.nanoTime() - sTime));
System.out.printf("{region: %s, ioCount: %d, took: %d μs}\n", region, searcher.getIOCount(), cost);
} catch (Exception e) {
System.out.printf("failed to search(%s): %s\n", ip, e);
}
// 3、关闭资源
searcher.close();
// 备注:并发使用,每个线程需要创建一个独立的 searcher 对象单独使用。
}
}
VectorIndex
索引我们可以提前从 xdb
文件中加载出来 VectorIndex
数据,然后全局缓存,每次创建 Searcher 对象的时候使用全局的 VectorIndex 缓存可以减少一次固定的 IO 操作,从而加速查询,减少 IO 压力。
import org.lionsoul.ip2region.xdb.Searcher;
import java.io.*;
import java.util.concurrent.TimeUnit;
public class SearcherTest {
public static void main(String[] args) {
String dbPath = "ip2region.xdb file path";
// 1、从 dbPath 中预先加载 VectorIndex 缓存,并且把这个得到的数据作为全局变量,后续反复使用。
byte[] vIndex;
try {
vIndex = Searcher.loadVectorIndexFromFile(dbPath);
} catch (Exception e) {
System.out.printf("failed to load vector index from `%s`: %s\n", dbPath, e);
return;
}
// 2、使用全局的 vIndex 创建带 VectorIndex 缓存的查询对象。
Searcher searcher;
try {
searcher = Searcher.newWithVectorIndex(dbPath, vIndex);
} catch (Exception e) {
System.out.printf("failed to create vectorIndex cached searcher with `%s`: %s\n", dbPath, e);
return;
}
// 3、查询
try {
String ip = "1.2.3.4";
long sTime = System.nanoTime();
String region = searcher.search(ip);
long cost = TimeUnit.NANOSECONDS.toMicros((long) (System.nanoTime() - sTime));
System.out.printf("{region: %s, ioCount: %d, took: %d μs}\n", region, searcher.getIOCount(), cost);
} catch (Exception e) {
System.out.printf("failed to search(%s): %s\n", ip, e);
}
// 4、关闭资源
searcher.close();
// 备注:每个线程需要单独创建一个独立的 Searcher 对象,但是都共享全局的制度 vIndex 缓存。
}
}
xdb
数据我们也可以预先加载整个 ip2region.xdb 的数据到内存,然后基于这个数据创建查询对象来实现完全基于文件的查询,类似之前的 memory search。
import org.lionsoul.ip2region.xdb.Searcher;
import java.io.*;
import java.util.concurrent.TimeUnit;
public class SearcherTest {
public static void main(String[] args) {
String dbPath = "ip2region.xdb file path";
// 1、从 dbPath 加载整个 xdb 到内存。
byte[] cBuff;
try {
cBuff = Searcher.loadContentFromFile(dbPath);
} catch (Exception e) {
System.out.printf("failed to load content from `%s`: %s\n", dbPath, e);
return;
}
// 2、使用上述的 cBuff 创建一个完全基于内存的查询对象。
Searcher searcher;
try {
searcher = Searcher.newWithBuffer(cBuff);
} catch (Exception e) {
System.out.printf("failed to create content cached searcher: %s\n", e);
return;
}
// 3、查询
try {
String ip = "1.2.3.4";
long sTime = System.nanoTime();
String region = searcher.search(ip);
long cost = TimeUnit.NANOSECONDS.toMicros((long) (System.nanoTime() - sTime));
System.out.printf("{region: %s, ioCount: %d, took: %d μs}\n", region, searcher.getIOCount(), cost);
} catch (Exception e) {
System.out.printf("failed to search(%s): %s\n", ip, e);
}
// 4、关闭资源 - 该 searcher 对象可以安全用于并发,等整个服务关闭的时候再关闭 searcher
// searcher.close();
// 备注:并发使用,用整个 xdb 数据缓存创建的查询对象可以安全的用于并发,也就是你可以把这个 searcher 对象做成全局对象去跨线程访问。
}
}
通过 maven 来编译测试程序。
# cd 到 java binding 的根目录
cd binding/java/
mvn compile package
然后会在当前目录的 target 目录下得到一个 ip2region-{version}.jar 的打包文件。
可以通过 java -jar ip2region-{version}.jar search
命令来测试查询:
➜ java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar search
java -jar ip2region-{version}.jar search [command options]
options:
--db string ip2region binary xdb file path
--cache-policy string cache policy: file/vectorIndex/content
例如:使用默认的 data/ip2region.xdb 文件进行查询测试:
➜ java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar search --db=../../data/ip2region.xdb
ip2region xdb searcher test program, cachePolicy: vectorIndex
type 'quit' to exit
ip2region>> 1.2.3.4
{region: 美国|0|华盛顿|0|谷歌, ioCount: 7, took: 82 μs}
ip2region>>
输入 ip 即可进行查询测试,也可以分别设置 cache-policy
为 file/vectorIndex/content 来测试三种不同缓存实现的查询效果。
可以通过 java -jar ip2region-{version}.jar bench
命令来进行 bench 测试,一方面确保 xdb
文件没有错误,一方面可以评估查询性能:
➜ java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar bench
java -jar ip2region-{version}.jar bench [command options]
options:
--db string ip2region binary xdb file path
--src string source ip text file path
--cache-policy string cache policy: file/vectorIndex/content
例如:通过默认的 data/ip2region.xdb 和 data/ip.merge.txt 文件进行 bench 测试:
➜ java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar bench --db=../../data/ip2region.xdb --src=../../data/ip.merge.txt
Bench finished, {cachePolicy: vectorIndex, total: 3417955, took: 8s, cost: 2 μs/op}
可以通过分别设置 cache-policy
为 file/vectorIndex/content 来测试三种不同缓存实现的效果。 @Note: 注意 bench 使用的 src 文件要是生成对应 xdb 文件相同的源文件。