当前位置: 首页 > 工具软件 > ip2region > 使用案例 >

Ip2region 离线IP地址定位库

卜存
2023-12-01

Ip2region 是什么

ip2region v2.0 - 是一个离线IP地址定位库和IP定位数据管理框架,10微秒级别的查询效率,提供了众多主流编程语言的 xdb 数据生成和查询客户端实现。

GitHub首页

xdb包下载

java使用首页

支持Python、Java、Go 等多种主流开发语言,详情见首页

ip2region xdb java 查询客户端实现

使用方式

maven 仓库:

<dependency>
    <groupId>org.lionsoul</groupId>
    <artifactId>ip2region</artifactId>
    <version>2.6.5</version>
</dependency>

完全基于文件的查询

import org.lionsoul.ip2region.xdb.Searcher;
import java.io.*;
import java.util.concurrent.TimeUnit;

public class SearcherTest {
    public static void main(String[] args) {
        // 1、创建 searcher 对象
        String dbPath = "ip2region.xdb file path";
        Searcher searcher = null;
        try {
            searcher = Searcher.newWithFileOnly(dbPath);
        } catch (IOException e) {
            System.out.printf("failed to create searcher with `%s`: %s\n", dbPath, e);
            return;
        }

        // 2、查询
        try {
            String ip = "1.2.3.4";
            long sTime = System.nanoTime();
            String region = searcher.search(ip);
            long cost = TimeUnit.NANOSECONDS.toMicros((long) (System.nanoTime() - sTime));
            System.out.printf("{region: %s, ioCount: %d, took: %d μs}\n", region, searcher.getIOCount(), cost);
        } catch (Exception e) {
            System.out.printf("failed to search(%s): %s\n", ip, e);
        }

        // 3、关闭资源
        searcher.close();
        
        // 备注:并发使用,每个线程需要创建一个独立的 searcher 对象单独使用。
    }
}

缓存 VectorIndex 索引

我们可以提前从 xdb 文件中加载出来 VectorIndex 数据,然后全局缓存,每次创建 Searcher 对象的时候使用全局的 VectorIndex 缓存可以减少一次固定的 IO 操作,从而加速查询,减少 IO 压力。

import org.lionsoul.ip2region.xdb.Searcher;
import java.io.*;
import java.util.concurrent.TimeUnit;

public class SearcherTest {
    public static void main(String[] args) {
        String dbPath = "ip2region.xdb file path";

        // 1、从 dbPath 中预先加载 VectorIndex 缓存,并且把这个得到的数据作为全局变量,后续反复使用。
        byte[] vIndex;
        try {
            vIndex = Searcher.loadVectorIndexFromFile(dbPath);
        } catch (Exception e) {
            System.out.printf("failed to load vector index from `%s`: %s\n", dbPath, e);
            return;
        }

        // 2、使用全局的 vIndex 创建带 VectorIndex 缓存的查询对象。
        Searcher searcher;
        try {
            searcher = Searcher.newWithVectorIndex(dbPath, vIndex);
        } catch (Exception e) {
            System.out.printf("failed to create vectorIndex cached searcher with `%s`: %s\n", dbPath, e);
            return;
        }

        // 3、查询
        try {
            String ip = "1.2.3.4";
            long sTime = System.nanoTime();
            String region = searcher.search(ip);
            long cost = TimeUnit.NANOSECONDS.toMicros((long) (System.nanoTime() - sTime));
            System.out.printf("{region: %s, ioCount: %d, took: %d μs}\n", region, searcher.getIOCount(), cost);
        } catch (Exception e) {
            System.out.printf("failed to search(%s): %s\n", ip, e);
        }
        
        // 4、关闭资源
        searcher.close();

        // 备注:每个线程需要单独创建一个独立的 Searcher 对象,但是都共享全局的制度 vIndex 缓存。
    }
}

缓存整个 xdb 数据

我们也可以预先加载整个 ip2region.xdb 的数据到内存,然后基于这个数据创建查询对象来实现完全基于文件的查询,类似之前的 memory search。

import org.lionsoul.ip2region.xdb.Searcher;
import java.io.*;
import java.util.concurrent.TimeUnit;

public class SearcherTest {
    public static void main(String[] args) {
        String dbPath = "ip2region.xdb file path";

        // 1、从 dbPath 加载整个 xdb 到内存。
        byte[] cBuff;
        try {
            cBuff = Searcher.loadContentFromFile(dbPath);
        } catch (Exception e) {
            System.out.printf("failed to load content from `%s`: %s\n", dbPath, e);
            return;
        }

        // 2、使用上述的 cBuff 创建一个完全基于内存的查询对象。
        Searcher searcher;
        try {
            searcher = Searcher.newWithBuffer(cBuff);
        } catch (Exception e) {
            System.out.printf("failed to create content cached searcher: %s\n", e);
            return;
        }

        // 3、查询
        try {
            String ip = "1.2.3.4";
            long sTime = System.nanoTime();
            String region = searcher.search(ip);
            long cost = TimeUnit.NANOSECONDS.toMicros((long) (System.nanoTime() - sTime));
            System.out.printf("{region: %s, ioCount: %d, took: %d μs}\n", region, searcher.getIOCount(), cost);
        } catch (Exception e) {
            System.out.printf("failed to search(%s): %s\n", ip, e);
        }
        
        // 4、关闭资源 - 该 searcher 对象可以安全用于并发,等整个服务关闭的时候再关闭 searcher
        // searcher.close();

        // 备注:并发使用,用整个 xdb 数据缓存创建的查询对象可以安全的用于并发,也就是你可以把这个 searcher 对象做成全局对象去跨线程访问。
    }
}

编译测试程序

通过 maven 来编译测试程序。

# cd 到 java binding 的根目录
cd binding/java/
mvn compile package

然后会在当前目录的 target 目录下得到一个 ip2region-{version}.jar 的打包文件。

查询测试

可以通过 java -jar ip2region-{version}.jar search 命令来测试查询:

➜  java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar search
java -jar ip2region-{version}.jar search [command options]
options:
 --db string              ip2region binary xdb file path
 --cache-policy string    cache policy: file/vectorIndex/content

例如:使用默认的 data/ip2region.xdb 文件进行查询测试:

➜  java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar search --db=../../data/ip2region.xdb
ip2region xdb searcher test program, cachePolicy: vectorIndex
type 'quit' to exit
ip2region>> 1.2.3.4
{region: 美国|0|华盛顿|0|谷歌, ioCount: 7, took: 82 μs}
ip2region>>

输入 ip 即可进行查询测试,也可以分别设置 cache-policy 为 file/vectorIndex/content 来测试三种不同缓存实现的查询效果。

bench 测试

可以通过 java -jar ip2region-{version}.jar bench 命令来进行 bench 测试,一方面确保 xdb 文件没有错误,一方面可以评估查询性能:

➜  java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar bench
java -jar ip2region-{version}.jar bench [command options]
options:
 --db string              ip2region binary xdb file path
 --src string             source ip text file path
 --cache-policy string    cache policy: file/vectorIndex/content

例如:通过默认的 data/ip2region.xdb 和 data/ip.merge.txt 文件进行 bench 测试:

➜  java git:(v2.0_xdb) ✗ java -jar target/ip2region-2.6.0.jar bench --db=../../data/ip2region.xdb --src=../../data/ip.merge.txt
Bench finished, {cachePolicy: vectorIndex, total: 3417955, took: 8s, cost: 2 μs/op}

可以通过分别设置 cache-policy 为 file/vectorIndex/content 来测试三种不同缓存实现的效果。 @Note: 注意 bench 使用的 src 文件要是生成对应 xdb 文件相同的源文件。

 类似资料: