上节我们讨论了Zipper-串形不可变集合(immutable sequential collection)游标,在串形集合中左右游走及元素维护操作。这篇我们谈谈Tree。在电子商务应用中对于xml,json等格式文件的处理要求非常之普遍,scalaz提供了Tree数据类型及相关的游览及操作函数能更方便高效的处理xml,json文件及系统目录这些树形结构数据的相关编程。scalaz Tree的定义非常简单:scalaz/Tree.scala
* A multi-way tree, also known as a rose tree. Also known as Cofree[Stream, A].
*/
sealed abstract class Tree[A] {
import Tree._
/** The label at the root of this tree. */
def rootLabel: A
/** The child nodes of this tree. */
def subForest: Stream[Tree[A]]
...
Tree是由一个A值rootLabel及一个流中子树Stream[Tree[A]]组成。Tree可以只由一个A类型值rootLabel组成,这时流中子树subForest就是空的Stream.empty。只有rootLabel的Tree俗称叶(leaf),有subForest的称为节(node)。scalaz为任何类型提供了leaf和node的构建注入方法:syntax/TreeOps.scala
final class TreeOps[A](self: A) {
def node(subForest: Tree[A]*): Tree[A] = Tree.node(self, subForest.toStream)
def leaf: Tree[A] = Tree.leaf(self)
}
trait ToTreeOps {
implicit def ToTreeOps[A](a: A) = new TreeOps(a)
}
实际上注入方法调用了Tree里的构建函数:
trait TreeFunctions {
/** Construct a new Tree node. */
def node[A](root: => A, forest: => Stream[Tree[A]]): Tree[A] = new Tree[A] {
lazy val rootLabel = root
lazy val subForest = forest
override def toString = "<tree>"
}
/** Construct a tree node with no children. */
def leaf[A](root: => A): Tree[A] = node(root, Stream.empty)
Tree提供了构建和模式拆分函数:
object Tree extends TreeInstances with TreeFunctions {
/** Construct a tree node with no children. */
def apply[A](root: => A): Tree[A] = leaf(root)
object Node {
def unapply[A](t: Tree[A]): Option[(A, Stream[Tree[A]])] = Some((t.rootLabel, t.subForest))
}
}
Tree("ALeaf") === "ALeaf".leaf //> res5: Boolean = true
val tree: Tree[Int] =
1.node(
11.leaf,
12.node(
121.leaf),
2.node(
21.leaf,
22.leaf)
) //> tree : scalaz.Tree[Int] = <tree>
tree.drawTree //> res6: String = "1
//| |
//| +- 11
//| |
//| +- 12
//| | |
//| | `- 121
//| |
//| `- 2
//| |
//| +- 21
//| |
//| `- 22
//| "
Tree实现了下面众多的接口函数:
sealed abstract class TreeInstances {
implicit val treeInstance: Traverse1[Tree] with Monad[Tree] with Comonad[Tree] with Align[Tree] with Zip[Tree] = new Traverse1[Tree] with Monad[Tree] with Comonad[Tree] with Align[Tree] with Zip[Tree] {
def point[A](a: => A): Tree[A] = Tree.leaf(a)
def cobind[A, B](fa: Tree[A])(f: Tree[A] => B): Tree[B] = fa cobind f
def copoint[A](p: Tree[A]): A = p.rootLabel
override def map[A, B](fa: Tree[A])(f: A => B) = fa map f
def bind[A, B](fa: Tree[A])(f: A => Tree[B]): Tree[B] = fa flatMap f
def traverse1Impl[G[_]: Apply, A, B](fa: Tree[A])(f: A => G[B]): G[Tree[B]] = fa traverse1 f
override def foldRight[A, B](fa: Tree[A], z: => B)(f: (A, => B) => B): B = fa.foldRight(z)(f)
override def foldMapRight1[A, B](fa: Tree[A])(z: A => B)(f: (A, => B) => B) = (fa.flatten.reverse: @unchecked) match {
case h #:: t => t.foldLeft(z(h))((b, a) => f(a, b))
}
override def foldLeft[A, B](fa: Tree[A], z: B)(f: (B, A) => B): B =
fa.flatten.foldLeft(z)(f)
override def foldMapLeft1[A, B](fa: Tree[A])(z: A => B)(f: (B, A) => B): B = fa.flatten match {
case h #:: t => t.foldLeft(z(h))(f)
}
override def foldMap[A, B](fa: Tree[A])(f: A => B)(implicit F: Monoid[B]): B = fa foldMap f
def alignWith[A, B, C](f: (\&/[A, B]) ⇒ C) = {
def align(ta: Tree[A], tb: Tree[B]): Tree[C] =
Tree.node(f(\&/(ta.rootLabel, tb.rootLabel)), Align[Stream].alignWith[Tree[A], Tree[B], Tree[C]]({
case \&/.This(sta) ⇒ sta map {a ⇒ f(\&/.This(a))}
case \&/.That(stb) ⇒ stb map {b ⇒ f(\&/.That(b))}
case \&/.Both(sta, stb) ⇒ align(sta, stb)
})(ta.subForest, tb.subForest))
align _
}
def zip[A, B](aa: => Tree[A], bb: => Tree[B]) = {
val a = aa
val b = bb
Tree.node(
(a.rootLabel, b.rootLabel),
Zip[Stream].zipWith(a.subForest, b.subForest)(zip(_, _))
)
}
}
implicit def treeEqual[A](implicit A0: Equal[A]): Equal[Tree[A]] =
new TreeEqual[A] { def A = A0 }
implicit def treeOrder[A](implicit A0: Order[A]): Order[Tree[A]] =
new Order[Tree[A]] with TreeEqual[A] {
def A = A0
import std.stream._
override def order(x: Tree[A], y: Tree[A]) =
A.order(x.rootLabel, y.rootLabel) match {
case Ordering.EQ =>
Order[Stream[Tree[A]]].order(x.subForest, y.subForest)
case x => x
}
}
// 是 Functor...
(tree map { v: Int => v + 1 }) ===
2.node(
12.leaf,
13.node(
122.leaf),
3.node(
22.leaf,
23.leaf)
) //> res7: Boolean = true
// ...是 Monad
1.point[Tree] === 1.leaf //> res8: Boolean = true
val t2 = tree >>= (x => (x == 2) ? x.leaf | x.node((-x).leaf))
//> t2 : scalaz.Tree[Int] = <tree>
t2 === 1.node((-1).leaf, 2.leaf, 3.node((-3).leaf, 4.node((-4).leaf)))
//> res9: Boolean = false
t2.drawTree //> res10: String = "1
//| |
//| +- -1
//| |
//| +- 11
//| | |
//| | `- -11
//| |
//| +- 12
//| | |
//| | +- -12
//| | |
//| | `- 121
//| | |
//| | `- -121
//| |
//| `- 2
//| |
//| +- 21
//| | |
//| | `- -21
//| |
//| `- 22
//| |
//| `- -22
//| "
// ...是 Foldable
tree.foldMap(_.toString) === "1111212122122" //> res11: Boolean = true
def pathTree[E](root: E, paths: Seq[Seq[E]]): Tree[E] = {
root.node(paths groupBy (_.head) map {
case (parent, subpaths) =>
pathTree(parent, subpaths collect {
case pp +: rest if rest.nonEmpty => rest
})
} toSeq: _*)
}
val paths = List(List("A","a1","a2"),List("B","b1"))
//> paths : List[List[String]] = List(List(A, a1, a2), List(B, b1))
pathTree("root",paths) drawTree //> res0: String = ""root"
//| |
//| +- "A"
//| | |
//| | `- "a1"
//| | |
//| | `- "a2"
//| |
//| `- "B"
//| |
//| `- "b1"
//| "
val paths = List(List("A","a1","a2"),List("B","b1"),List("B","b2","b3"))
//> paths : List[List[String]] = List(List(A, a1, a2), List(B, b1), List(B, b2,
//| b3))
pathTree("root",paths) drawTree //> res0: String = ""root"
//| |
//| +- "A"
//| | |
//| | `- "a1"
//| | |
//| | `- "a2"
//| |
//| `- "B"
//| |
//| +- "b2"
//| | |
//| | `- "b3"
//| |
//| `- "b1"
//| "
val paths = List(List("A")) //> paths : List[List[String]] = List(List(A))
val gpPaths =paths.groupBy(_.head) //> gpPaths : scala.collection.immutable.Map[String,List[List[String]]] = Map(A-> List(List(A)))
List(List("A")) collect { case pp +: rest if rest.nonEmpty => rest }
//> res0: List[List[String]] = List()
"root".node(
"A".node(List().toSeq: _*)
) drawTree //> res3: String = ""root"
//| |
//| `- "A"
//| "
"root".node(
"A".node(List().toSeq: _*),
"B".node(List().toSeq: _*)
) drawTree //> res4: String = ""root"
//| |
//| +- "A"
//| |
//| `- "B"
//| "
val paths = List(List("A","a1")) //> paths : List[List[String]] = List(List(A, a1))
val gpPaths =paths.groupBy(_.head) //> gpPaths : scala.collection.immutable.Map[String,List[List[String]]] = Map(A
//| -> List(List(A, a1)))
List(List("A","a1")) collect { case pp +: rest if rest.nonEmpty => rest }
//> res0: List[List[String]] = List(List(a1))
//化解成
"root".node(
"A".node(
"a1".node(
List().toSeq: _*)
)
) drawTree //> res3: String = ""root"
//| |
//| `- "A"
//| |
//| `- "a1"
//| "
val paths = List(List("A","a1"),List("A","a2")) //> paths : List[List[String]] = List(List(A, a1), List(A, a2))
val gpPaths =paths.groupBy(_.head) //> gpPaths : scala.collection.immutable.Map[String,List[List[String]]] = Map(A
//| -> List(List(A, a1), List(A, a2)))
List(List("A","a1"),List("A","a2")) collect { case pp +: rest if rest.nonEmpty => rest }
//> res0: List[List[String]] = List(List(a1), List(a2))
//相当产生结果
"root".node(
"A".node(
"a1".node(
List().toSeq: _*)
,
"a2".node(
List().toSeq: _*)
)
) drawTree //> res3: String = ""root"
//| |
//| `- "A"
//| |
//| +- "a1"
//| |
//| `- "a2"
//| "
final case class TreeLoc[A](tree: Tree[A], lefts: TreeForest[A],
rights: TreeForest[A], parents: Parents[A]) {
...
trait TreeLocFunctions {
type TreeForest[A] =
Stream[Tree[A]]
type Parent[A] =
(TreeForest[A], A, TreeForest[A])
type Parents[A] =
Stream[Parent[A]]
/** A TreeLoc zipper of this tree, focused on the root node. */
def loc: TreeLoc[A] = TreeLoc.loc(this, Stream.Empty, Stream.Empty, Stream.Empty)
val tree: Tree[Int] =
1.node(
11.leaf,
12.node(
121.leaf),
2.node(
21.leaf,
22.leaf)
) //> tree : scalaz.Tree[Int] = <tree>
tree.loc //> res7: scalaz.TreeLoc[Int] = TreeLoc(<tree>,Stream(),Stream(),Stream())
def root: TreeLoc[A] =
parent match {
case Some(z) => z.root
case None => this
}
/** Select the left sibling of the current node. */
def left: Option[TreeLoc[A]] = lefts match {
case t #:: ts => Some(loc(t, ts, tree #:: rights, parents))
case Stream.Empty => None
}
/** Select the right sibling of the current node. */
def right: Option[TreeLoc[A]] = rights match {
case t #:: ts => Some(loc(t, tree #:: lefts, ts, parents))
case Stream.Empty => None
}
/** Select the leftmost child of the current node. */
def firstChild: Option[TreeLoc[A]] = tree.subForest match {
case t #:: ts => Some(loc(t, Stream.Empty, ts, downParents))
case Stream.Empty => None
}
/** Select the rightmost child of the current node. */
def lastChild: Option[TreeLoc[A]] = tree.subForest.reverse match {
case t #:: ts => Some(loc(t, ts, Stream.Empty, downParents))
case Stream.Empty => None
}
/** Select the nth child of the current node. */
def getChild(n: Int): Option[TreeLoc[A]] =
for {lr <- splitChildren(Stream.Empty, tree.subForest, n)
ls = lr._1
} yield loc(ls.head, ls.tail, lr._2, downParents)
val tree: Tree[Int] =
1.node(
11.leaf,
12.node(
121.leaf),
2.node(
21.leaf,
22.leaf)
) //> tree : scalaz.Tree[Int] = <tree>
tree.loc //> res7: scalaz.TreeLoc[Int] = TreeLoc(<tree>,Stream(),Stream(),Stream())
val l = for {
l1 <- tree.loc.some
l2 <- l1.firstChild
l3 <- l1.lastChild
l4 <- l3.firstChild
} yield (l1,l2,l3,l4) //> l : Option[(scalaz.TreeLoc[Int], scalaz.TreeLoc[Int], scalaz.TreeLoc[Int],
//| scalaz.TreeLoc[Int])] = Some((TreeLoc(<tree>,Stream(),Stream(),Stream()),T
//| reeLoc(<tree>,Stream(),Stream(<tree>, <tree>),Stream((Stream(),1,Stream()),
//| ?)),TreeLoc(<tree>,Stream(<tree>, <tree>),Stream(),Stream((Stream(),1,Stre
//| am()), ?)),TreeLoc(<tree>,Stream(),Stream(<tree>, ?),Stream((Stream(<tree>,
//| <tree>),2,Stream()), ?))))
l.get._1.getLabel //> res8: Int = 1
l.get._2.getLabel //> res9: Int = 11
l.get._3.getLabel //> res10: Int = 2
l.get._4.getLabel //> res11: Int = 21
/** Select the nth child of the current node. */
def getChild(n: Int): Option[TreeLoc[A]] =
for {lr <- splitChildren(Stream.Empty, tree.subForest, n)
ls = lr._1
} yield loc(ls.head, ls.tail, lr._2, downParents)
/** Select the first immediate child of the current node that satisfies the given predicate. */
def findChild(p: Tree[A] => Boolean): Option[TreeLoc[A]] = {
@tailrec
def split(acc: TreeForest[A], xs: TreeForest[A]): Option[(TreeForest[A], Tree[A], TreeForest[A])] =
(acc, xs) match {
case (acc, Stream.cons(x, xs)) => if (p(x)) Some((acc, x, xs)) else split(Stream.cons(x, acc), xs)
case _ => None
}
for (ltr <- split(Stream.Empty, tree.subForest)) yield loc(ltr._2, ltr._1, ltr._3, downParents)
}
/**Select the first descendant node of the current node that satisfies the given predicate. */
def find(p: TreeLoc[A] => Boolean): Option[TreeLoc[A]] =
Cobind[TreeLoc].cojoin(this).tree.flatten.find(p)
val tree: Tree[Int] =
1.node(
11.leaf,
12.node(
121.leaf),
2.node(
21.leaf,
22.leaf)
) //> tree : scalaz.Tree[Int] = <tree>
tree.loc //> res7: scalaz.TreeLoc[Int] = TreeLoc(<tree>,Stream(),Stream(),Stream())
val l = for {
l1 <- tree.loc.some
l2 <- l1.find{_.getLabel == 2}
l3 <- l1.find{_.getLabel == 121}
l4 <- l2.find{_.getLabel == 22}
l5 <- l1.findChild{_.rootLabel == 12}
l6 <- l1.findChild{_.rootLabel == 2}
} yield l6 //> l : Option[scalaz.TreeLoc[Int]] = Some(TreeLoc(<tree>,Stream(<tree>, ?),St
//| ream(),Stream((Stream(),1,Stream()), ?)))
/** Replace the current node with the given one. */
def setTree(t: Tree[A]): TreeLoc[A] = loc(t, lefts, rights, parents)
/** Modify the current node with the given function. */
def modifyTree(f: Tree[A] => Tree[A]): TreeLoc[A] = setTree(f(tree))
/** Modify the label at the current node with the given function. */
def modifyLabel(f: A => A): TreeLoc[A] = setLabel(f(getLabel))
/** Get the label of the current node. */
def getLabel: A = tree.rootLabel
/** Set the label of the current node. */
def setLabel(a: A): TreeLoc[A] = modifyTree((t: Tree[A]) => node(a, t.subForest))
/** Insert the given node to the left of the current node and give it focus. */
def insertLeft(t: Tree[A]): TreeLoc[A] = loc(t, lefts, Stream.cons(tree, rights), parents)
/** Insert the given node to the right of the current node and give it focus. */
def insertRight(t: Tree[A]): TreeLoc[A] = loc(t, Stream.cons(tree, lefts), rights, parents)
/** Insert the given node as the first child of the current node and give it focus. */
def insertDownFirst(t: Tree[A]): TreeLoc[A] = loc(t, Stream.Empty, tree.subForest, downParents)
/** Insert the given node as the last child of the current node and give it focus. */
def insertDownLast(t: Tree[A]): TreeLoc[A] = loc(t, tree.subForest.reverse, Stream.Empty, downParents)
/** Insert the given node as the nth child of the current node and give it focus. */
def insertDownAt(n: Int, t: Tree[A]): Option[TreeLoc[A]] =
for (lr <- splitChildren(Stream.Empty, tree.subForest, n)) yield loc(t, lr._1, lr._2, downParents)
/** Delete the current node and all its children. */
def delete: Option[TreeLoc[A]] = rights match {
case Stream.cons(t, ts) => Some(loc(t, lefts, ts, parents))
case _ => lefts match {
case Stream.cons(t, ts) => Some(loc(t, ts, rights, parents))
case _ => for (loc1 <- parent) yield loc1.modifyTree((t: Tree[A]) => node(t.rootLabel, Stream.Empty))
}
}
用法示范:
val tr = 1.leaf //> tr : scalaz.Tree[Int] = <tree>
val tl = for {
l1 <- tr.loc.some
l3 <- l1.insertDownLast(12.leaf).some
l4 <- l3.insertDownLast(121.leaf).some
l5 <- l4.root.some
l2 <- l5.insertDownFirst(11.leaf).some
l6 <- l2.root.some
l7 <- l6.find{_.getLabel == 12}
l8 <- l7.setLabel(102).some
} yield l8 //> tl : Option[scalaz.TreeLoc[Int]] = Some(TreeLoc(<tree>,Stream(<tree>, ?),S
//| tream(),Stream((Stream(),1,Stream()), ?)))
tl.get.toTree.drawTree //> res8: String = "1
//| |
//| +- 11
//| |
//| `- 102
//| |
//| `- 121
//| "
val tree: Tree[Int] =
1.node(
11.leaf,
12.node(
121.leaf),
2.node(
21.leaf,
22.leaf)
) //> tree : scalaz.Tree[Int] = <tree>
def modTree(t: Tree[Int]): Tree[Int] = {
val l = for {
l1 <- t.loc.some
l2 <- l1.find{_.getLabel == 22}
l3 <- l2.setTree { 3.node (31.leaf) }.some
} yield l3
l.get.toTree
} //> modTree: (t: scalaz.Tree[Int])scalaz.Tree[Int]
val l = for {
l1 <- tree.loc.some
l2 <- l1.find{_.getLabel == 2}
l3 <- l2.modifyTree{modTree(_)}.some
l4 <- l3.root.some
l5 <- l4.find{_.getLabel == 12}
l6 <- l5.delete
} yield l6 //> l : Option[scalaz.TreeLoc[Int]] = Some(TreeLoc(<tree>,Stream(<tree>, ?),St
//| ream(),Stream((Stream(),1,Stream()), ?)))
l.get.toTree.drawTree //> res7: String = "1
//| |
//| +- 11
//| |
//| `- 2
//| |
//| +- 21
//| |
//| `- 3
//| |
//| `- 31
//| "
通过scalaz的Tree和TreeLoc数据结构,以及一整套树形结构游览、操作函数,我们可以方便有效地实现FP风格的不可变树形集合编程。