【Caffe】solver文件配置解读

冯开诚
2023-12-01

Caffe之solver文件配置

讲解一下solver.prototxt文件里面个参数的意义。

DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题。sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而达到最小化loss,实际上就是迭代优化算法中的参数。

Caffe的solver类提供了6种优化算法,配置文件中可以通过type关键字设置:

  • Stochastic Gradient Descent(type:”SGD”)
  • AdaDelta(type:”AdaDelta”)
  • Adaptive Gradient(type:”AdaGrad”)
  • Adam(type:”Adam”)
  • Nesterov’s Accelerated Gradient (type: “Nesterov”)
  • RMSprop (type: “RMSProp”)
    简单地讲,solver就是一个告诉caffe你需要网络如何被训练的一个配置文件。

Solver.prototxt流程

1.首先设计好需要优化的对象,以及用于学习的训练网络和测试网络的prototxt文件(通常是train.prototxt和test.prototxt文件)
2.通过forward和backward迭代进行优化来更新参数
3.定期对网络进行评价
4.优化过程中显示模型和solver的状态

Solver参数

base_lr
这个参数代表的是此网络最开始的学习速率(Beginning Learning rate),一般是个浮点数,根据机器学习中的知识,lr过大会导致不收敛,过小会导致收敛过慢,所以这个参数设置也很重要。

lr_policy

这个参数代表的是learning rate应该遵守什么样的变化规则,这个参数对应的是字符串,选项及说明如下:

  • “step” - 需要设置一个stepsize参数,返回base_lr * gamma ^ ( floor ( iter / stepsize ) ),iter为当前迭代次数
  • “multistep” - 和step相近,但是需要stepvalue参数,step是均匀等间隔变化,而multistep是根据stepvalue的值进行变化
  • “fixed” - 保持base_lr不变
  • “exp” - 返回base_lr * gamma ^ iter, iter为当前迭代次数
  • “poly” - 学习率进行多项式误差衰减,返回 base_lr ( 1 - iter / max_iter ) ^ ( power )
  • “sigmoid” - 学习率进行sigmod函数衰减,返回 base_lr ( 1/ 1+exp ( -gamma * ( iter - stepsize ) ) )

gamma
这个参数就是和learning rate相关的,lr_policy中包含此参数的话,需要进行设置,一般是一个实数。

stepsize

This parameter indicates how often (at some iteration count) that we should move onto the next “step” of training. This value is a positive integer.

stepvalue
This parameter indicates one of potentially many iteration counts that we should move onto the next “step” of training. This value is a positive integer. There are often more than one of these parameters present, each one indicated the next step iteration.

max_iter
最大迭代次数,这个数值告诉网络何时停止训练,太小会达不到收敛,太大会导致震荡,为正整数。

momentum
上一次梯度更新的权重,real fraction

weight_decay
权重衰减项,用于防止过拟合。

solver_mode
选择CPU训练或者GPU训练。

snapshot
训练快照,确定多久保存一次model和solverstate,positive integer。

snapshot_prefix
snapshot的前缀,就是model和solverstate的命名前缀,也代表路径。

net
path to prototxt (train and val)

test_iter
每次test_interval的test的迭代次数,假设测试样本总数为10000张图片,一次性执行全部的话效率很低,所以将测试数据分为几个批次进行测试,每个批次的数量就是batch_size。如果batch_size=100,那么需要迭代100次才能将10000个数据全部执行完,所以test_iter设置为100。

test_interval
测试间隔,每训练多少次进行一次测试。

display
间隔多久对结果进行输出

iter_size
这个参数乘上train.prototxt中的batch size是你实际使用的batch size。 相当于读取batchsize * itersize个图像才做一下gradient decent。 这个参数可以规避由于gpu内存不足而导致的batchsize的限制 因为你可以用多个iteration做到很大的batch 即使单次batch有限。

average_loss
取多次foward的loss作平均,进行显示输出

Basic

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/model/"
solver_mode: CPU

Adam

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.001
momentum: 0.9
momentum2: 0.999
lr_policy: "fixed"
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
type: "Adam"
solver_mode: CPU

AdaGrad

net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "fixed"
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train"
solver_mode: GPU
type: "AdaGrad"

rmsprop

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.0
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_rmsprop"
solver_mode: GPU
type: "RMSProp"
rms_decay: 0.98

AdaDelta

net: "examples/mnist/lenet_train_test.prototxt"
test_iter: 100
lr_policy: "fixed"
momentum: 0.95
weight_decay: 0.0005
display: 100
max_iter: 10000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet_adadelta"
solver_mode: GPU
type: "AdaDelta"
delta: 1e-6

Nesterov

net: "examples/mnist/mnist_autoencoder.prototxt"
test_state: { stage: 'test-on-train' }
test_iter: 500
test_state: { stage: 'test-on-test' }
test_iter: 100
test_interval: 500
test_compute_loss: true
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 10000
display: 100
max_iter: 65000
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train"
momentum: 0.95
solver_mode: GPU
type: "Nesterov"

FCN的Solver.prototxt

train_net: "train.prototxt"
test_net: "val.prototxt"
test_iter: 736
# make test net, but don't invoke it from the solver itself
test_interval: 999999999
display: 20
average_loss: 20
lr_policy: "fixed"
# lr for unnormalized softmax
base_lr: 1e-10
# high momentum
momentum: 0.99
# no gradient accumulation
iter_size: 1
max_iter: 100000
weight_decay: 0.0005
snapshot: 4000
snapshot_prefix: "snapshot/train"
test_initialization: false

参考
http://blog.csdn.net/czp0322/article/details/52161759

 类似资料: