mysql web日志分析工具_一款短小精悍的日志分析工具web_log_analyse

盖辉
2023-12-01

(项目最新进展请见github)

web_log_analyse

This tool aim at trouble shooting and performance optimization based on web logs, it's not a generally said log analyse/statistics solution. It preprocess logs on all web server with a specified period and save the intermediate results into mongodb for finally use(with log_show.py)

日志分析在日常中故障排查、性能分析方面有着非常重要的作用。该项目的侧重点不是通常的PV,UV等展示,而是在指定时间段内提供细粒度(最小分钟级别)的异常定位和性能分析。

Dependencies

Python 3.4+

pymongo-3.7.2+

MongoDB-server 3.4+

先明确几个术语:

uri指不包含参数的请求;request_uri指原始的请求,包含参数;args指请求中的参数部分。(参照nginx中的定义)

uri_abs和args_abs是指对uri和args进行抽象处理后的字符串(以便分类),例如:

"/sub/0/100414/4070?channel=ios&version=1.4.5"经抽象处理转换为uri_abs: "/sub/*/*/*",args_abs: "channel=*&version=*"

功能

提供统一的日志分析入口:经由此入口,可查看站点在所有server上产生的日志的汇总分析;亦可根据时间段和server两个维度进行过滤

支持对 request_uri,ip 和 response_code 三大类进行分析;每一类又基于请求数、响应大小、响应时间三个维度进行分析。另外不同子项又各有特点

request_uri 分析能直观展示哪类请求数量多、哪类请求耗时多、哪类请求占流量;另外可展示某一类请求在不同时间粒度里(minute, ten_min, hour, day)各指标随时间的分布变化;也可以针对某一 uri_abs 分析其不同 args_abs 各指标的分布

IP 分析将所有请求分为3种来源(from_cdn/proxy, from_reverse_proxy, from_client_directly),三种来源各自展示其访问量前 N 的 IP 地址;并且可展示某一 IP 访问的各指标随时间的分布;也可针对某一 IP 分析其产生的不同 uri_abs 各指标的分布

特点

核心思想: 对request_uri进行抽象归类,将其中变化的部分以 “*” 表示,这样留下不变的部分就能代表具体的一类请求。实际上是换一种方式看待日志,从 “以具体的一行日志文本作为最小分析单位” 抽象上升到 “以某一功能点,某一接口或某一模块最为最小分析单位”

兼容plaintext和json格式的日志内容

配置方便,不需要写正则。只要将nginx中定义的log_format复制到config文件中即可

通过4分位数概念以实现对响应时间和响应大小更准确的描述,因为对于日志中的响应时间,算数平均值的参考意义不大

支持定制抽象规则,可灵活指定请求中的某些部分是否要抽象处理以及该如何抽象处理

高效,本着谁产生的日志谁处理的思想,日志分析脚本log_analyse要在web服务器上定时运行(有点类似分布式),因而log_analyse的高效率低资源也是重中之重。经测试,在笔者的服务器上(磁盘:3*7200rpm RAID5,千兆局域网),处理速度在20000行/s~30000行/s之间

实现思路:

分析脚本(log_analyse.py)部署到各台web server,并通过crontab设置定时运行。log_analyse.py利用python的re模块通过正则表达式对日志进行分析处理,取得uri、args、时间当前、状态码、响应大小、响应时间、server name 等信息并进行初步加工然后存储进MongoDB。查看脚本(log_show.py)作为入口即可对所有web server的日志进行分析查看,至于实时性,取决于web server上log_analyse.py脚本的执行频率。

配置文件

日志格式决定了代码中的正则表达式,可根据自己情况参考config.py中的正则定义进行定制)。项目中预定义的日志格式对应如下:

LOG_FORMAT = '$remote_addr - [$time_local] "$request" '\

'$status $body_bytes_sent $request_time "$http_referer" '\

'"$http_user_agent" - $http_x_forwarded_for'

对于异常日志的处理

如果想靠空格或双引号来分割各段的话,主要问题是面对各种不规范的记录时(原因不一而足,而且也是样式繁多),无法做到将各种异常都考虑在内,所以项目中采用了re模块而不是简单的split()函数。代码里对一些“可以容忍”的异常记录通过一些判断逻辑予以处理;对于“无法容忍”的异常记录则返回空字符串并将日志记录于文件。

其实对于上述的这些不规范的请求,最好的办法是在nginx中定义日志格式时,用一个特殊字符作为分隔符,例如“|”。这样就不需要re模块,直接字符串分割就能正确的获取到各段(性能会好些)。

log_show.py使用说明:

帮助信息

[ljk@demo ~]$ log_show --help

Usage:

log_show [options] request [distribution []|detail ]

log_show [options] ip [distribution |detail ]

log_show [options] error [distribution |detail ]

Options:

-h --help Show this screen.

-f --from Start time. Format: %y%m%d[%H[%M]], %H and %M is optional

-t --to End time. Format is same as --from

-l --limit Number of lines in output, 0 means no limit. [default: 5]

-s --server Web server hostname

-g --group_by Group by every minute, every ten minutes, every hour or every day,

valid values: "minute", "ten_min", "hour", "day". [default: hour]

distribution Show distribution(about hits,bytes,time,etc) of:

all or specific 'request', the specific 'ip', the specific 'error_code' in every period.

Period is specific by --group_by

detail Show details of:

detail 'args' analyse of the specific 'uri'(if it has args);

detail 'uri' analyse of the specific 'ip' or 'error_code'

Notice: it's best to put 'request_uri', 'uri' and 'ip' in quotation marks.

所有示例均可通过-f,-t,-s参数对起始时间和指定server进行过滤

request子命令:

对指定站点今日已入库的数据进行分析

[ljk@demo ~]$ log_show api request -l 3

====================

Total_hits:×××05 invalid_hits:581

====================

hits percent time_distribution(s) bytes_distribution(B) uri_abs

430210 43.06% %50<0.03 %75<0.06 %100<2.82 %50<61 %75<63 %100<155 /api/record/getR

183367 18.35% %50<0.03 %75<0.06 %100<1.73 %50<196 %75<221 %100<344 /api/getR/com/*/*/*

102299 10.24% %50<0.02 %75<0.05 %100<1.77 %50<3862 %75<3982 %100<4512 /view/*/*/*/*.js

====================

Total_bytes:1.91 GB

====================

bytes percent time_distribution(s) bytes_distribution(B) uri_abs

1.23 GB 64.61% %50<0.04 %75<0.1 %100<1.96 %50<17296 %75<31054 %100<691666 /api/NewCom/list

319.05 MB 16.32% %50<0.02 %75<0.05 %100<1.77 %50<3862 %75<3982 %100<4512 /view/*/*/*/*.js

167.12 MB 8.55% %50<0.19 %75<0.55 %100<2.93 %50<3078 %75<3213 %100<11327 /api/getR/com/*/*

====================

Total_time:117048s

====================

cum. time percent time_distribution(s) bytes_distribution(B) uri_abs

38747 33.10% %50<0.03 %75<0.06 %100<2.82 %50<61 %75<63 %100<155 /api/record/getR

22092 18.87% %50<0.03 %75<0.06 %100<1.73 %50<196 %75<221 %100<344 /api/getR/com/*/*/*

17959 15.34% %50<0.19 %75<0.55 %100<2.93 %50<3078 %75<3213 %100<11327 /api/getRInfo/com/*/*

通过上例可观察指定时间内(默认当天0时至当前时间)hits/bytes/time三个维度的排名以及响应时间和响应大小的分布情况。例如,看到某个uri_abs只有比较少的hits确产生了比较大的bytes或耗费了较多的time,那么该uri_abs是否值得关注一下呢。

ip子命令:

显示基于ip地址的分析结果

[ljk@demo ~]$ log_show.py api ip -l 2

====================

From_cdn/Proxy: hits hits(%) bytes bytes(%) time(%)

==================== 199870 99.94 570.51 MB 99.99 99.99

Last_cdn_ip

xxx.57.xxx.189 1914 0.96 696.18 KB 0.12 0.68

xxx.206.xxx.154 1741 0.87 1.56 MB 0.27 0.98

User_ip_via_cdn

xxx.249.xxx.56 787 0.39 154.82 KB 0.03 0.23

xxx.60.xxx.86 183 0.09 1.05 MB 0.18 0.13

====================

From_reverse_proxy: hits hits(%) bytes bytes(%) time(%)

==================== 66 0.03 68.83 KB 0.01 0.01

User_ip_via_proxy

xxx.188.xxx.21 2 0.00 1.53 KB 0.00 0.00

xxx.5.xxx.4 2 0.00 324.00 B 0.00 0.00

====================

From_client_directly: hits hits(%) bytes bytes(%) time(%)

==================== 64 0.03 8.32 KB 0.00 0.00

Remote_addr

192.168.1.202 29 0.01 58.00 B 0.00 0.00

192.168.1.200 29 0.01 58.00 B 0.00 0.00

IP分析的思想是将请求按来源归为三大类:From_cdn/Proxy,From_reverse_proxy,From_client_directly,然后各自分类内按请求次数对IP地址进行排序

distribution 子命令:

对 “所有request” 或 “指定uri/request_uri” 按 “分/十分/时/天” 为粒度进行聚合统计

对 “指定IP” 按 “分/十分/时/天” 为粒度进行聚合统计

适用场景:查看request/IP随时间在各聚合粒度内各项指标的变化情况,例如针对某个uri发现其请求数(或带宽)变大,则可通过distribution子命令观察是某一段时间突然变大呢,还是比较平稳的变大

# 示例1: 分析指定request的分布情况, 指定按minute进行分组聚合, 默认显示5行

[ljk@demo ~]$ python log_show.py api request distribution "/view/*/*.json" -g minute

====================

uri_abs: /view/*/*.json

Total_hits: 17130 Total_bytes: 23.92 MB

====================

minute hits hits(%) bytes bytes(%) time_distribution(s) bytes_distribution(B)

201803091654 1543 9.01% 2.15 MB 8.98% %50<0.03 %75<0.05 %100<1.07 %50<1593 %75<1645 %100<1982

201803091655 1527 8.91% 2.13 MB 8.88% %50<0.04 %75<0.05 %100<1.04 %50<1592 %75<1642 %100<2143

201803091656 1464 8.55% 2.05 MB 8.57% %50<0.04 %75<0.05 %100<1.03 %50<1592 %75<1642 %100<1952

201803091657 1551 9.05% 2.15 MB 8.97% %50<0.03 %75<0.04 %100<0.89 %50<1594 %75<1639 %100<1977

201803091658 1458 8.51% 2.06 MB 8.61% %50<0.03 %75<0.04 %100<2.35 %50<1596 %75<1644 %100<2146

通过上例,可展示"/view/*/*.json"在指定时间段内的分布情况,包括hits/bytes/time总量以及每个粒度内个指标相对于总量的占比;该子命令亦能展示各指标随时间的“趋势”。

说明:

minute字段为指定的聚合(group)粒度,1803091654 表示“18年03月09日16时54分”

可通过-g参数指定聚合的粒度(minute/ten_min/hour/day)

distribution子命令后可以跟具体的uri/request_uri(显示该uri/request_uri以指定粒度随时间的分布)或不跟uri(显示所有请求以指定粒度随时间的分布)

# 示例2: 分析指定IP产生的请求数/带宽随时间分布情况, 默认聚合粒度为hour

[ljk@demo ~]$ python log_show.py api ip -t 180314 distribution "140.206.109.174" -l 0

====================

IP: 140.206.109.174

Total_hits: 10999 Total_bytes: 4.83 MB

====================

hour hits hits(%) bytes bytes(%)

2018031306 1273 11.57% 765.40 KB 15.47%

2018031307 2133 19.39% 1004.74 KB 20.31%

2018031308 2211 20.10% 1.00 MB 20.74%

2018031309 2334 21.22% 1.05 MB 21.72%

2018031310 2421 22.01% 850.79 KB 17.20%

2018031311 627 5.70% 226.30 KB 4.57%

说明:

hour字段表示默认的聚合粒度,18031306表示“18年03月13日06时”

-l 0 表示不限制输出行数(即输出所有结果)

detail 子命令:

对某一uri进行详细分析,查看其不同参数(args)的各项指标分布

对某一IP进行详细分析,查看其产生的请求在不同uri_abs间的分布情

适用场景:比如定位到某一类型的uri_abs在某方面(hits/bytes/time)有异常,就可以通过detail子命令对该类uri_abs进行更近一步的分析,精确定位到是哪种参数(args_abs)导致的异常;或者观察到某个IP访问异常,可以再深入一下该IP是泛泛的访问呢,还是只对某些uri感兴趣。

# 示例1:

[ljk@demo ~]$ python log_show.py api -f 180201 request detail "/recommend/update" -l 3

====================

uri_abs: /recommend/batchUpdate

Total_hits: 10069 Total_bytes: 7.62 MB

====================

hits hits(%) bytes bytes(%) time(%) time_distribution(s) bytes_distribution(B) args_abs

4568 45.37% 3.46 MB 45.44% 47.96% %50<0.06 %75<0.07 %100<0.47 %50<795 %75<845 %100<1484 uid=*&category_id=*&channel=*&version=*

4333 43.03% 3.25 MB 42.64% 42.30% %50<0.05 %75<0.07 %100<0.48 %50<791 %75<840 %100<1447 category_id=*&channel=*&uid=*&version=*

389 3.86% 314.15 KB 4.03% 0.88% %50<0.03 %75<0.04 %100<0.06 %50<802 %75<850 %100<1203 category_id=*&channel=*&version=*

通过上例可观察到"/recommend/update"这个uri所对应的不同参数各个指标的情况。另外还有一个附带的发现:开发在书写参数时相同的参数组合没有按同一个顺序书写,虽不影响功能,但在精准的进行应用性能监控的时候会造成一定困扰。

说明:

detail子命令后跟随uri(不含参数,含参数的话将忽略参数)

# 示例2: 观察某个IP分别产生了多少种请求, 每种请求的(hits/bytes/time)指标

[ljk@demo ~]$ python log_show.py m -t 180314 ip detail "1.2.3.4"

====================

IP: 140.206.109.174

Total_hits: 10999 Total_bytes: 4.83 MB

====================

hits hits(%) bytes bytes(%) time(%) uri_abs

10536 95.79% 405.47 KB 8.19% 92.01% /introduction/watch

147 1.34% 1.90 MB 39.31% 1.93% /view/*/*.html

138 1.25% 407.42 KB 8.23% 2.41% /chapinfo/*/*.html

42 0.38% 644.88 KB 13.03% 1.38% /info/*.html

30 0.27% 229.98 KB 4.65% 1.14% /classify/*.json

log_analyse.py部署说明:

该脚本的设计目标是将其放到web server的的计划任务里,定时(例如每30分钟或10分钟,自定义)执行,在需要时通过log_show.py进行分析即可。

*/15 * * * * export LANG=zh_CN.UTF-8;python3 /home/ljk/log_analyse.py &> /tmp/log_analyse.log

Note

其中uri_abs和args_abs是对uri和args进行抽象化(抽象出特定的请求模式,即将请求分类看待)处理之后的结果,默认规则如下

uri:将request_uri以"/"和"."分割为几段,若某一段全部由数字组成则将其抽象为一个"*"

args:将所有的value替换成"*"

common/common.py中还有一些其他有趣的函数

 类似资料: