The main purpose of this repository is to build a good project setup and workflow for writing a Node api rest in TypeScript using KOA and an SQL DB.
Koa is a new web framework designed by the team behind Express, which aims to be a smaller, more expressive, and more robust foundation for web applications and APIs. Through leveraging generators Koa allows you to ditch callbacks and greatly increase error-handling. Koa does not bundle any middleware within core, and provides an elegant suite of methods that make writing servers fast and enjoyable.
Through Github Actions CI, this boilerplate is deployed here! You can try to make requests to the different defined endpoints and see how it works. The following Authorization header will have to be set (already signed with the boilerplate's secret) to pass the JWT middleware:
HEADER (DEMO)
Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6IjEiLCJuYW1lIjoiSmF2aWVyIEF2aWxlcyIsImVtYWlsIjoiYXZpbGVzbG9wZXouamF2aWVyQGdtYWlsLmNvbSJ9.7oxEVGy4VEtaDQyLiuoDvzdO0AyrNrJ_s9NU3vko5-k
AVAILABLE ENDPOINTS DEMO SWAGGER DOCS DEMO
When running the project locally with watch-server
, being .env
file config the very same as .example.env
file, the swagger docs will be deployed at: http:localhost:3000/swagger-html
, and the bearer token for authorization should be as follows:
HEADER (LOCALHOST BASED ON DEFAULT SECRET KEY 'your-secret-whatever')
Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6IjEiLCJuYW1lIjoiSmF2aWVyIEF2aWxlcyIsImVtYWlsIjoiYXZpbGVzbG9wZXouamF2aWVyQGdtYWlsLmNvbSJ9.rgOobROftUYSWphkdNfxoN2cgKiqNXd4Km4oz6Ex4ng
method | resource | description |
---|---|---|
GET |
/ |
Simple hello world response |
GET |
/users |
returns the collection of users present in the DB |
GET |
/users/:id |
returns the specified id user |
POST |
/users |
creates a user in the DB (object user to be includued in request's body) |
PUT |
/users/:id |
updates an already created user in the DB (object user to be includued in request's body) |
DELETE |
/users/:id |
deletes a user from the DB (JWT token user ID must be the same as the user you want to delete) |
To build and run this app locally you will need:
git clone --depth=1 https://github.com/javieraviles/node-typescript-koa-rest.git <project_name>
cd <project_name>
npm install
npm run watch-server
npm run build
npm run start
npm run test:integration:local (newman needed)
npm run test:load (locust needed)
npm run test
npm run test:coverage
npm run test:watch
A docker-compose file has been added to the project with a postgreSQL (already setting user, pass and dbname as the ORM config is expecting) and an ADMINER image (easy web db client).
It is as easy as go to the project folder and execute the command 'docker-compose up' once you have Docker installed, and both the postgreSQL server and the Adminer client will be running in ports 5432 and 8080 respectively with all the config you need to start playing around.
If you use Docker natively, the host for the server which you will need to include in the ORM configuration file will be localhost, but if you were to run Docker in older Windows versions, you will be using Boot2Docker and probably your virtual machine will use your ip 192.168.99.100 as network adapter (if not, command docker-machine ip
will tell you). This mean your database host will be the aforementioned ip and in case you want to access the web db client you will also need to go to http://192.168.99.100/8080
This API is prepared to work with an SQL database, using TypeORM. In this case we are using postgreSQL, and that is why in the package.json 'pg' has been included. If you where to use a different SQL database remember to install the correspondent driver.
The ORM configuration and connection to the database can be specified in the file 'ormconfig.json'. Here is directly in the connection to the database in 'server.ts' file because a environment variable containing databaseUrl is being used to set the connection data. This is prepared for Heroku, which provides a postgres-string-connection as env variable. In local is being mocked with the docker local postgres as can be seen in ".example.env"
It is importante to notice that, when serving the project directly with *.ts files using ts-node,the configuration for the ORM should specify the *.ts files path, but once the project is built (transpiled) and run as plain js, it will be needed to change it accordingly to find the built js files:
"entities": [
"dist/entity/**/*.js"
],
"migrations": [
"dist/migration/**/*.js"
],
"subscribers": [
"dist/subscriber/**/*.js"
]
**NOTE: this is now automatically handled by the NODE_ENV variable too.
Notice that if NODE_ENV is set to development, the ORM config won't be using SSL to connect to the DB. Otherwise it will.
And because Heroku uses self-signed certificates, this bit has been added, please take it out if connecting to a local DB without SSL.
createConnection({
...
extra: {
ssl: {
rejectUnauthorized: false // Heroku uses self signed certificates
}
}
})
You can find an implemented CRUD of the entity user in the correspondent controller controller/user.ts and its routes in routes.ts file.
This project uses the library class-validator, a decorator-based entity validation, which is used directly in the entities files as follows:
export class User {
@Length(10, 100) // length of string email must be between 10 and 100 characters
@IsEmail() // the string must comply with an standard email format
@IsNotEmpty() // the string can't be empty
email: string;
}
Once the decorators have been set in the entity, you can validate from anywhere as follows:
const user = new User();
user.email = "avileslopez.javier@gmail"; // should not pass, needs the ending .com to be a valid email
validate(user).then(errors => { // errors is an array of validation errors
if (errors.length > 0) {
console.log("validation failed. errors: ", errors); // code will get here, printing an "IsEmail" error
} else {
console.log("validation succeed");
}
});
For further documentation regarding validations see class-validator docs.
Create a .env file (or just rename the .example.env) containing all the env variables you want to set, dotenv library will take care of setting them. This project is using three variables at the moment:
TypeScript itself is simple to add to any project with npm
.
npm install -D typescript
If you're using VS Code then you're good to go!VS Code will detect and use the TypeScript version you have installed in your node_modules
folder.For other editors, make sure you have the corresponding TypeScript plugin.
The most obvious difference in a TypeScript + Node project is the folder structure.TypeScript (.ts
) files live in your src
folder and after compilation are output as JavaScript (.js
) in the dist
folder.
The full folder structure of this app is explained below:
Note! Make sure you have already built the app using
npm run build
Name | Description |
---|---|
dist | Contains the distributable (or output) from your TypeScript build. This is the code you ship |
node_modules | Contains all your npm dependencies |
src | Contains your source code that will be compiled to the dist dir |
src/server.ts | Entry point to your KOA app |
.github/workflows/ci.yml | Github actions CI configuration |
loadtests/locustfile.py | Locust load tests |
integrationtests/node-koa-typescript.postman_collection.json | Postman integration test collection |
.copyStaticAssets.ts | Build script that copies images, fonts, and JS libs to the dist folder |
package.json | File that contains npm dependencies as well as build scripts |
docker-compose.yml | Docker PostgreSQL and Adminer images in case you want to load the db from Docker |
tsconfig.json | Config settings for compiling server code written in TypeScript |
.eslintrc and .eslintignore | Config settings for ESLint code style checking |
.example.env | Env variables file example to be renamed to .env |
Dockerfile and dockerignore | The app is dockerized to be deployed from CI in a more standard way, not needed for dev |
TypeScript uses the file tsconfig.json
to adjust project compile options.Let's dissect this project's tsconfig.json
, starting with the compilerOptions
which details how your project is compiled.
"compilerOptions": {
"module": "commonjs",
"target": "es2017",
"lib": ["es6"],
"noImplicitAny": true,
"strictPropertyInitialization": false,
"moduleResolution": "node",
"sourceMap": true,
"outDir": "dist",
"baseUrl": ".",
"experimentalDecorators": true,
"emitDecoratorMetadata": true,
}
},
compilerOptions |
Description |
---|---|
"module": "commonjs" |
The output module type (in your .js files). Node uses commonjs, so that is what we use |
"target": "es2017" |
The output language level. Node supports ES2017, so we can target that here |
"lib": ["es6"] |
Needed for TypeORM. |
"noImplicitAny": true |
Enables a stricter setting which throws errors when something has a default any value |
"moduleResolution": "node" |
TypeScript attempts to mimic Node's module resolution strategy. Read more here |
"sourceMap": true |
We want source maps to be output along side our JavaScript. |
"outDir": "dist" |
Location to output .js files after compilation |
"baseUrl": "." |
Part of configuring module resolution. |
paths: {...} |
Part of configuring module resolution. |
"experimentalDecorators": true |
Needed for TypeORM. Allows use of @Decorators |
"emitDecoratorMetadata": true |
Needed for TypeORM. Allows use of @Decorators |
The rest of the file define the TypeScript project context.The project context is basically a set of options that determine which files are compiled when the compiler is invoked with a specific tsconfig.json
.In this case, we use the following to define our project context:
"include": [
"src/**/*"
]
include
takes an array of glob patterns of files to include in the compilation.This project is fairly simple and all of our .ts files are under the src
folder.For more complex setups, you can include an exclude
array of glob patterns that removes specific files from the set defined with include
.There is also a files
option which takes an array of individual file names which overrides both include
and exclude
.
All the different build steps are orchestrated via npm scripts.Npm scripts basically allow us to call (and chain) terminal commands via npm.This is nice because most JavaScript tools have easy to use command line utilities allowing us to not need grunt or gulp to manage our builds.If you open package.json
, you will see a scripts
section with all the different scripts you can call.To call a script, simply run npm run <script-name>
from the command line.You'll notice that npm scripts can call each other which makes it easy to compose complex builds out of simple individual build scripts.Below is a list of all the scripts this template has available:
Npm Script | Description |
---|---|
start |
Does the same as 'npm run serve'. Can be invoked with npm start |
build |
Full build. Runs ALL build tasks (build-ts , lint , copy-static-assets ) |
serve |
Runs node on dist/server/server.js which is the apps entry point |
watch-server |
Nodemon, process restarts if crashes. Continuously watches .ts files and re-compiles to .js |
build-ts |
Compiles all source .ts files to .js files in the dist folder |
lint |
Runs ESLint check and fix on project files |
copy-static-assets |
Calls script that copies JS libs, fonts, and images to dist directory |
test:integration:<env> |
Execute Postman integration tests collection using newman on any env (local or heroku ) |
test:load |
Execute Locust load tests using a specific configuration |
Using Github Actions a pipeline is deploying the application in Heroku and running tests against it, checking the application is healthy deployed. The pipeline can be found at /.github/workflows/test.yml
. This performs the following:
Since TSLint is deprecated now, ESLint feels like the way to go as also supports typescript.ESLint is a static code analysis tool for identifying problematic patterns found in JavaScript/typescript code.
Like most linters, ESLint has a wide set of configurable rules as well as support for custom rule sets.All rules are configured through .eslintrc
.In this project, we are using a fairly basic set of rules with no additional custom rules.
Like the rest of our build steps, we use npm scripts to invoke ESLint.To run ESLint you can call the main build script or just the ESLint task.
npm run build // runs full build including ESLint format check
npm run lint // runs ESLint check + fix
Notice that ESLint is not a part of the main watch task.It can be annoying for ESLint to clutter the output window while in the middle of writing a function, so I elected to only run it only during the full build.If you are interested in seeing ESLint feedback as soon as possible, I strongly recommend the ESLint extension in VS Code.
Cron dependency has been added to the project together with types. A cron.ts
file has been created where a cron job is created using a cron expression configured in config.ts
file.
import { CronJob } from 'cron';
import { config } from './config';
const cron = new CronJob(config.cronJobExpression, () => {
console.log('Executing cron job once every hour');
});
export { cron };
From the server.ts
, the cron job gets started:
import { cron } from './cron';
// Register cron job to do any action needed
cron.start();
Integrations tests are a Postman collection with assertions, which gets executed using Newman from the CI (Github Actions). It can be found at /integrationtests/node-koa-typescript.postman_collection.json
; it can be opened in Postman and get modified very easily. Feel free to install Newman in your local environment and trigger npm run test:integration:local
command which will use local environment file (instead of heroku dev one) to trigger your postman collection faster than using postman.
Load tests are a locust file with assertions, which gets executed from the CI (Github Actions). It can be found at /loadtests/locustfile.py
; It is written in python and can be executed locally against any host once python and locust are installed on your dev machine.
**NOTE: at the end of load tests, an endpoint to remove all created test users is called.
Winston is designed to be a simple and universal logging library with support for multiple transports.
A "logger" middleware passing a winstonInstance has been created. Current configuration of the logger can be found in the file "logger.ts". It will log 'error' level to an error.log file and 'debug' or 'info' level (depending on NODE_ENV environment variable, debug if == development) to the console.
// Logger middleware -> use winston as logger (logger.ts with config)
app.use(logger(winston));
The idea is to keep the API as clean as possible, therefore the auth will be done from the client using an auth provider such as Auth0. The client making requests to the API should include the JWT in the Authorization header as "Authorization: Bearer <jwt_token>". HS256 will be used as the secret will be known by both your api and your client and will be used to sign the token, so make sure you keep it hidden.
As can be found in the server.ts file, a JWT middleware has been added, passing the secret from an environment variable. The middleware will validate that every request to the routes below, MUST include a valid JWT signed with the same secret. The middleware will set automatically the payload information in ctx.state.user.
// JWT middleware -> below this line, routes are only reached if JWT token is valid, secret as env variable
app.use(jwt({ secret: config.jwtSecret }));
Go to the website https://jwt.io/ to create JWT tokens for testing/debugging purposes. Select algorithm HS256 and include the generated token in the Authorization header to pass through the jwt middleware.
Custom 401 handling -> if you don't want to expose koa-jwt errors to users:
app.use(function(ctx, next){
return next().catch((err) => {
if (401 == err.status) {
ctx.status = 401;
ctx.body = 'Protected resource, use Authorization header to get access\n';
} else {
throw err;
}
});
});
If you want to authenticate from the API, and you fancy the idea of an auth provider like Auth0, have a look at jsonwebtoken — JSON Web Token signing and verification
This boilerplate uses @koa/cors, a simple CORS middleware for koa. If you are not sure what this is about, click here.
// Enable CORS with default options
app.use(cors());
Have a look at Official @koa/cors docs in case you want to specify 'origin' or 'allowMethods' properties.
This boilerplate uses koa-helmet, a wrapper for helmet to work with koa. It provides important security headers to make your app more secure by default.
Usage is the same as helmet. Helmet offers 11 security middleware functions (clickjacking, DNS prefetching, Security Policy...), everything is set by default here.
// Enable helmet with default options
app.use(helmet());
Have a look at Official koa-helmet docs in case you want to customize which security middlewares are enabled.
Dependencies are managed through package.json
.In that file you'll find two sections:
Package | Description |
---|---|
dotenv | Loads environment variables from .env file. |
koa | Node web framework. |
koa-bodyparser | A bodyparser for koa. |
koa-jwt | Middleware to validate JWT tokens. |
@koa/router | Router middleware for koa. |
koa-helmet | Wrapper for helmet, important security headers to make app more secure |
@koa/cors | Cross-Origin Resource Sharing(CORS) for koa |
pg | PostgreSQL driver, needed for the ORM. |
reflect-metadata | Used by typeORM to implement decorators. |
typeorm | A very cool SQL ORM. |
winston | Logging library. |
class-validator | Decorator based entities validation. |
koa-swagger-decorator | using decorator to automatically generate swagger doc for koa-router. |
cron | Register cron jobs in node. |
Package | Description |
---|---|
@types | Dependencies in this folder are .d.ts files used to provide types |
nodemon | Utility that automatically restarts node process when it crashes |
ts-node | Enables directly running TS files. Used to run copy-static-assets.ts |
eslint | Linter for Javascript/TypeScript files |
typescript | JavaScript compiler/type checker that boosts JavaScript productivity |
shelljs | Portable Unix shell commands for Node.js |
To install or update these dependencies you can use npm install
or npm update
.
TSLint
(deprecated already) to ESLint
10.x.x
to 12.0.0
(LTS)package-lock.json
using npm ci
(Beyond guaranteeing you that you'll only get what is in your lock-file it's also much faster (2x-10x!) than npm install when you don't start with a node_modules).koa-router
deprecated, using new fork from koa team @koa/router
npm run watch-server
is now working properly live-reloading changes in the code Issue 39.koa 中间件 中间件简单来说就是一个函数 自带参数 ctx,next ctx 接收前端参数,同时可以在 ctx 上添加属性这样其他中间件都可以获取例如下方 ctx.state.userInfo 中间件逻辑处理好需要 await next(); 放行 例:验证 token middleware/auth.js import response from "../utils/response.js";
一、Express 2010年1月发布-目前star 和下载量最高的老牌框架。Express 是一款基于Node.js以及Chrome V8引擎,快速、极简的JS服务端开发框架,它提供了用来开发强壮的 Web/移动应用,以及 API 的所有功能。并且开发人员还能够方便地为它开发插件和扩展,从而增加 Express 的能力。 官网 https://github.com/expressjs/expre
本文系原创,转载请附带作者信息:yhlben 项目地址:github.com/yhlben/cdfa… 前言 在实际的开发过程中,从零开始初始化一个项目往往很麻烦,所以各种各样的脚手架工具应运而生。crea-react-app,vue-cli,@angular/cli 等脚手架工具,只需要执行一个命令,项目结构以及开发环境就搭建好了。 脚手架工具确实方便了我们使用,开发者可以专注于业务,而不需要考
动机 一直想把typescript在服务端开发中用起来,主要原因有: javascript很灵活,但记忆力不好的话,的确会让你头疼,看着一月前自己写的代码,一脸茫然。 类型检查有利有敝,但在团队开发中,限制个人的天马行空还是很有效的; node对模块等es6特性的支持不尽人意,目前我只用node长期支持版所能支持的特性,个人不愿用babel之类的工具; 开始用webstorm开发,结果它象visu
node deno 什么是迪诺? (What Is Deno?) Deno is a JavaScript and TypeScript runtime that lets you write programs in either languages and execute them from the command line Deno是一个JavaScript和TypeScript运行时 ,可让
随着应用的庞大,项目中 javascript 的代码也会越来越臃肿,团队之间的协作也会遇到难题,如果不一直看 api 文档,很难知道团队其他成员写的方法需要什么参数,返回结果又是什么。 解决的方案有很多,这里不比较各种方法的优劣,仅说下选择 typescript 的考虑:1、接受程序好,ts 文件中可以直接写 javascript 代码,平滑过渡;2、vs code 的提示够好。 下面开始一步一步
Building RESTful Web APIs with Node.js, Express, MongoDB and TypeScript This is a simple API that saves contact information of people. There are two versions of this project. V1.0.0: you can run the s
Node.js API com Typescript Código do curso �� DO ZERO A PRODUÇÃO: APRENDA A CONSTRUIR UMA API NODE.JS COM TYPESCRIPT Durante o curso é criado uma API para calcular a melhor condição de surf entre vari
Node.js Express API with TypeScript 4 Node.js Express API with TypeScript 4. Supports MongoDBSee node-express-fast-progress if you need vanilla JS Description This generator will help you to build you
node-typescript-boilerplate ������ Developer Ready: A comprehensive template. Works out of the box for most Node.js projects. ���� Instant Value: All basic tools included and configured: TypeScript 4
TypeScript Node Starter The main purpose of this repository is to show a working Node.js API Server + front-end project and workflow for writing Node code in TypeScript. It is not a goal to be a compr
本文向大家介绍node中koa中间件机制详解,包括了node中koa中间件机制详解的使用技巧和注意事项,需要的朋友参考一下 koa koa是由express原班人马打造的一个更小、更富有表现力、更健壮的web框架。 在我眼中,koa的确是比express轻量的多,koa给我的感觉更像是一个中间件框架,koa只是一个基础的架子,需要用到的相应的功能时,用相应的中间件来实现就好,诸如路由系统等。一个更