Precompiled packages for AWS lambda
Selenium on PhantomJS. In fact - a ready-made tool for web scraping. For example, the demo now opens a random page in Wikipedia and sends its header. (PhantomJS at the same time disguises itself as a normal browser, knows how to log in, click and fill out forms) Also added requests, so you can do API requests for different resources to discard / take away the information.
Useful for web testing and scraping.
Current demo opens random page from wiki (https://en.wikipedia.org/wiki/Special:Random) and prints title.
git clone https://github.com/ryfeus/lambda-packs.git
cd lambda-packs/Selenium_PhantomJS/source/
serverless deploy
serverless invoke --function main --log
You can also see the results from the API Gateway endpoint in a web browser.
https://selenium-python.readthedocs.io/
What does the lambda have to do with it? In a nutshell on AWS in one region you can simultaneously run 200 lambdas (more if you write to support). Lambda works in 11 regions. So you can run in parallel more than 2000 lambdas, each of which will conduct load testing of your service. Five minutes of such testing will cost just one dollar.
Demo in this package tries to send requests to github.com for 5 seconds with 1 connection and also conduct pyresttest dummy test.
https://github.com/svanoort/pyresttest
Package for parsing static HTML pages. Difference here is that it works faster and consumes less memory than PhantomJS but is limited in terms websites it can parse and other features.
serverless install -u https://github.com/ryfeus/lambda-packs/tree/master/Lxml_requests/source -n lxml-requests
cd lxml-requests
serverless deploy
serverless invoke --function main --log
wget https://github.com/ryfeus/lambda-packs/blob/master/Lxml_requests/buildPack.sh
docker pull amazonlinux:latest
docker run -v $(pwd):/outputs --name lambdapackgen -d amazonlinux:latest tail -f /dev/null
docker exec -i -t lambdapackgen /bin/bash /outputs/buildPack.sh
Lxml 3.7.1
Open source library for Machine Intelligence. Basically revolutionized AI and made it more accessible. Using tensorflow on lambda is not as bad as it may sound - for some simple models it is the simplest and the cheapest way to deploy.
As hello world code I used recognition of images trained on imagenet (https://www.tensorflow.org/tutorials/image_recognition). Given the price tag lambda one run (recognition of one picture) will cost $0.00005. Therefore for a dollar you can recognize 20,000 images. It is much cheaper than almost any alternatives, though completely scalable (200 functions can be run in parallel), and can be easily integrated into cloud infrastructure. Current demo downloads image from link 'imagelink' from event source ( if empty - then downloads https://s3.amazonaws.com/ryfeuslambda/tensorflow/imagenet/cropped_panda.jpg)
Tensorflow 1.4.0
https://www.tensorflow.org/tutorials/image_recognition
Nightly version archive is more than 50 MB in size but it is still eligible for using with AWS Lambda (though you need to upload pack through S3). For more read here:
https://hackernoon.com/exploring-the-aws-lambda-deployment-limits-9a8384b0bec3
serverless install -u https://github.com/ryfeus/lambda-packs/tree/master/tensorflow/source -n tensorflow
cd tensorflow
serverless deploy
serverless invoke --function main --log
for Python2:
wget https://raw.githubusercontent.com/ryfeus/lambda-packs/master/Tensorflow/buildPack.sh
wget https://raw.githubusercontent.com/ryfeus/lambda-packs/master/Tensorflow/index.py
docker pull amazonlinux:latest
docker run -v $(pwd):/outputs --name lambdapackgen -d amazonlinux:latest tail -f /dev/null
docker exec -i -t lambdapackgen /bin/bash /outputs/buildPack.sh
for Python3:
wget https://raw.githubusercontent.com/ryfeus/lambda-packs/master/Tensorflow/buildPack_py3.sh
wget https://raw.githubusercontent.com/ryfeus/lambda-packs/master/Tensorflow/index_py3.py
docker pull amazonlinux:latest
docker run -v $(pwd):/outputs --name lambdapackgen -d amazonlinux:latest tail -f /dev/null
docker exec -i -t lambdapackgen /bin/bash /outputs/buildPack_py3.sh
Note: Remember You should set
python3.6
for AWS Lambda function environment.
arn:aws:lambda:us-east-1:339543757547:layer:tensorflow-pack
Package for fans of machine learning, building models and the like. I doubt that there is a more convenient way to deploy model to the real world.
Package of image processing tools, and not only to style image, but also a large set of computer vision algorithms.
There are currently two zipped packs available, Pack.zip and Pack_nomatplotlib.zip, you probably want to use Pack_nomatplotlib.zip. See https://github.com/ryfeus/lambda-packs/issues/5 for more information.
Scikit-image 0.12.3
Another package of image processing tools, and not only to style image, but also a large set of Computer vision algorithms.
https://pillow.readthedocs.io/
http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_tutorials.html
Package for fans of statistics, data scientists and data engineers. RAM at lambda is 1.5 gigabytes, and the maximum operating time - 5 minutes. I am sure that will be enough for most tasks.
Pandas 0.19.0
Opensource library for Natural Language Processing in python.
Example code loads language model from S3 and uses it to analyze sentence.
OCR (optical character recognition) library for text recognition from the image.
https://github.com/tesseract-ocr/tesseract
"Hello world" code in package creates example of every document. Basically these libs are low memory (less than 128MB) and high speed (less than 0.5 seconds) so it's something like ~1m documents generated per 1$ in terms of AWS Lambda pricing.
AWS Lambda pack in Python for processing satellite imagery. Basically it enables to deploy python code in an easy and cheap way for processing satellite imagery or polygons. In “hello world” code of the pack I download red, green, blue Landsat 8 bands from AWS, make True Color image out of it and upload it to S3. It takes 35 seconds and 824MB of RAM for it so ~2500 scenes can be processed for 1$.
Python 3.6 based PyTorch
# You need `docker` before run
./build-with-docker.sh
问题内容: 我正在尝试执行新的JDK 8函数式编程领域中似乎是相对基本的事情,但是我无法使其工作。我有这个工作代码: 它接受一个数字列表,并产生可以打印出来的功能列表。但是,显式强制转换为Callable似乎是多余的。在我和IntelliJ中看来。我们都同意这也应该起作用: 但是我得到一个错误: 问题答案: 您遇到了Java 8目标类型的限制,该限制适用于方法调用的 接收者 。尽管目标类型在大多数
我正试图做一件在新JDK似乎是相对基本的事情 它获取一个数字列表并生成一个可以将它们打印出来的函数列表。然而,Callable的显式强制执行似乎是多余的。对我和IntelliJ来说似乎是这样。我们都同意这也应该有效: 但是,我收到一个错误:
有时您可能只需要在程序中的一个位置使用一个函数,并且该函数非常简单,您可能不会给它命名,或者可能不想将它存储在符号表中,而宁愿编写一个未命名或匿名的函数。 LISP允许您编写仅在程序中遇到它们时才计算的匿名函数。 这些函数称为Lambda functions. 您可以使用lambda表达式创建此类函数。 lambda表达式的语法如下 - (lambda (parameters) body) 无法
头文件: "boost/lambda/lambda.hpp" 它包括了本库的核心部分。 "boost/lambda/bind.hpp" 它定义了 bind 函数。 "boost/lambda/if.hpp" 它定义了相当于 if 的 lambda ,以及条件操作符。 "boost/lambda/loops.hpp" 它定义了循环结构(例如,while_loop 和 for_loop)。 "b
AWS Lambda是一种响应式云服务,可检查应用程序中的操作,并通过部署用户定义的代码(称为functions响应。 它可以自动管理多个可用区域中的计算资源,并在触发新操作时对其进行扩展。 AWS Lambda支持使用Java,Python和Node.js编写的代码,该服务可以使用Amazon Linux支持的语言(包括Bash,Go和Ruby)启动流程。 以下是使用AWS Lambda时的一些
Lambda表达式在Java 8中引入,并被吹捧为Java 8的最大特性.Lambda表达式有助于函数式编程,并简化了很多开发。 语法 (Syntax) lambda表达式的特征在于以下语法。 parameter -> expression body 以下是lambda表达式的重要特征。 Optional type declaration - 无需声明参数类型。 编译器可以从参数的值推断出相同的
The extraordinary simple, performant, and extensible custom AWS Lambda runtime for Clojure. Holy Lambda supports multiple backends Babashka, Native Clojure (GraalVM compiled), Clojure (much faster tha
Python-lambda is a toolset for developing and deploying serverless Python code in AWS Lambda. A call for contributors With python-lambda and pytube both continuing to gain momentum, I'm calling forcon