MONAI

医学成像深度学习框架
授权协议 Apache-2.0
开发语言 Python
所属分类 企业应用、 开源医疗项目
软件类型 开源软件
地区 不详
投 递 者 华飞驰
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

MONAI 是一个用于医学成像领域的深度学习框架,可在原生 PyTorch 范式中开发医学成像训练工作流。

特性

  • 灵活的多维医学成像数据预处理;
  • 组合与可移植的 API,可轻松集成到现有工作流中;
  • 网络、评估指标等特定领域的实现;
  • 可定制的设计,以适应不同的用户专长;
  • 支持多 GPU 数据并行。
  • 目录 前言 安装步骤 基于 MONAI 的 MedMNIST 数据集分类任务 导入依赖 下载数据 读取图像信息 MONAI transforms 定义 Dataset、网络和优化器 训练 测试 总结 参考链接 前言 最近在读 CVPR 2023 上和医学图像方向相关的论文,发现其中的 Label-Free Liver Tumor Segmentation 这篇论文使用了 MONAI 这个框架。之前

  • MetaTensor 这是monai特有的类型 metaTensor=tensor+metaObj 也是原本的tensor,带上meta data,例如affine,spacing,direction,origin #a: MetaTensor a.meta['spatial_orgin_shape'] a.meta['affine'] a.meta['original_affine'] a.af

  • 一、前言 笔者接触深度学习不久,跑过一些二维图像的深度学习代码,对于二维图像,深度学习数据增强可借助skimage、opencv、imgaug、Albumentations、Augmentor等多数主流的库实现,在这里放一个大神的链接,可供参考。但对于三维数据,能够借助的库便少了起来,常用的有TorchIO和Monai,而针对于医学领域,Monai是一个不错的选择。笔者通过自学,将Monia库总结

  • LayerFactory 用于创建图层的工厂对象,这使用给定的工厂函数来实际产生类型或构建可调用程序。这些函数是通过名称来参考的,可以在任何时候添加。 用到的关键技术点: 装饰器(Decorators), 例如:@property装饰器,创建只读属性,@property装饰器会将方法转换为相同名称的只读属性,可以与所定义的属性配合使用,这样可以防止属性被修改 几个特殊的函数:__getitem__

 相关资料
  • 主要内容 课程列表 专项课程学习 辅助课程 论文专区 课程列表 课程 机构 参考书 Notes等其他资料 卷积神经网络视觉识别 Stanford 暂无 链接 神经网络 Tweet 暂无 链接 深度学习用于自然语言处理 Stanford 暂无 链接 自然语言处理 Speech and Language Processing 链接 专项课程学习 下述的课程都是公认的最好的在线学习资料,侧重点不同,但推

  • Google Cloud Platform 推出了一个 Learn TensorFlow and deep learning, without a Ph.D. 的教程,介绍了如何基于 Tensorflow 实现 CNN 和 RNN,链接在 这里。 Youtube Slide1 Slide2 Sample Code

  • 主要内容:机器学习,深度学习,机器学习与深度学习的区别,机器学习和深度学习的应用人工智能是近几年来最流行的趋势之一。机器学习和深度学习构成了人工智能。下面显示的维恩图解释了机器学习和深度学习的关系 - 机器学习 机器学习是让计算机按照设计和编程的算法行事的科学艺术。许多研究人员认为机器学习是实现人类AI的最佳方式。机器学习包括以下类型的模式 - 监督学习模式 无监督学习模式 深度学习 深度学习是机器学习的一个子领域,其中有关算法的灵感来自大脑的结构和功能,称为人工神经网络。

  • 主要内容:数据量,硬件依赖,特色工程在本章中,我们将讨论机器和深度学习概念之间的主要区别。 数据量 机器学习使用不同数量的数据,主要用于少量数据。另一方面,如果数据量迅速增加,深度学习可以有效地工作。下图描绘了机器学习和深度学习在数据量方面的工作 - 硬件依赖 与传统的机器学习算法相反,深度学习算法设计为在很大程度上依赖于高端机器。深度学习算法执行大量矩阵乘法运算,这需要巨大的硬件支持。 特色工程 特征工程是将领域知识放入指定特征的

  • 现在开始学深度学习。在这部分讲义中,我们要简单介绍神经网络,讨论一下向量化以及利用反向传播(backpropagation)来训练神经网络。 1 神经网络(Neural Networks) 我们将慢慢的从一个小问题开始一步一步的构建一个神经网络。回忆一下本课程最开始的时就见到的那个房价预测问题:给定房屋的面积,我们要预测其价格。 在之前的章节中,我们学到的方法是在数据图像中拟合一条直线。现在咱们不

  • 深度学习的总体来讲分三层,输入层,隐藏层和输出层。如下图: 但是中间的隐藏层可以是多层,所以叫深度神经网络,中间的隐藏层可以有多种形式,就构成了各种不同的神经网络模型。这部分主要介绍各种常见的神经网络层。在熟悉这些常见的层后,一个神经网络其实就是各种不同层的组合。后边介绍主要基于keras的文档进行组织介绍。

  • Python 是一种通用的高级编程语言,广泛用于数据科学和生成深度学习算法。这个简短的教程介绍了 Python 及其库,如 Numpy,Scipy,Pandas,Matplotlib,像 Theano,TensorFlow,Keras 这样的框架。

  • 你拿起这本书的时候,可能已经知道深度学习近年来在人工智能领域所取得的非凡进展。在图像识别和语音转录的任务上,五年前的模型还几乎无法使用,如今的模型的表现已经超越了人类。