mexjulia

embedding Julia in the MATLAB process.
授权协议 MIT License
开发语言
所属分类 应用工具、 科研计算工具
软件类型 开源软件
地区 不详
投 递 者 慎芷阳
操作系统 跨平台
开源组织
适用人群 未知
 软件概览

mexjulia: embedding Julia in the MATLAB process.

Note: this project is effectively in hibernation as its author no longer has access to matlab.

Prerequisites

mexjulia requires MATLAB (tested with R2016b) and Julia (>=v.0.6-dev) along with a C++ compiler configured to work with MATLAB's mex command, the last is required for building the mexjulia MEX function. You can check that a compiler is properly configured by executing:

>> mex -setup C++

from the MATLAB command prompt.

Configuration

Start MATLAB and navigate to the mexjulia directory. Once there, run:

>> jl.config

You will be prompted to select a julia executable. The build process will:

  1. use julia to determine build options,
  2. build the mexjulia MEX function from source,
  3. add the mexjulia directory to your MATLAB path.

Call jl.config any time you want to build against a different version of Julia. You canpass in the path to the desired Julia executable to build against if you don't wantto be prompted to select one.

Quick start

Use jl.eval to parse and evaluate MATLAB strings as Julia expressions:

>> jl.eval('2+2')

ans =

  int64

   4

You can evaluate multiple expressions in a single call:

>> [s, c] = jl.eval('sin(pi/3)', 'cos(pi/3)')

s =

    0.8660


c =

    0.5000

Julia's STDOUT and STDERR are redirected to the MATLAB console:

>> jl.eval('println("Hello, world!")');
Hello, world!
>> jl.eval('warn("Oh, no!")');
WARNING: Oh, no!

One can avoid the parentheses and string quotes using jleval (a simple wrapper aroundjl.eval) and MATLAB's command syntax:

>> jleval 1 + 1

ans =

  int64

   2

>> jleval println("Hello, world!")
Hello, world!

Use jl.call to call a Julia function specified by its name as a string:

>> jl.call('factorial', 10)

ans =

     3628800

jl.call marshals MATLAB data to/from Julia making certain default choices for doing so.

Load new Julia code by calling jl.include:

>> jl.include('my_own_julia_code.jl')

Exercise more control over how data is marshaled between MATLAB and Julia by defininga Julia function with a "MEX-like" signature and invoking it with jl.mex:

>> jleval double_it(args::Vector{MxArray}) = [2*jvalue(arg) for arg in args]
>> a = rand(5,5)

a =

    0.6443    0.9390    0.2077    0.1948    0.3111
    0.3786    0.8759    0.3012    0.2259    0.9234
    0.8116    0.5502    0.4709    0.1707    0.4302
    0.5328    0.6225    0.2305    0.2277    0.1848
    0.3507    0.5870    0.8443    0.4357    0.9049

>> jl.mex(1, 'double_it', a)

ans =

    1.2886    1.8780    0.4155    0.3895    0.6222
    0.7572    1.7519    0.6025    0.4518    1.8468
    1.6232    1.1003    0.9418    0.3414    0.8604
    1.0657    1.2450    0.4610    0.4553    0.3696
    0.7015    1.1741    1.6886    0.8714    1.8098

The first argument to jl.mex is the number of return values to expect. The second is the name of the function to be invoked. All remaining arguments are treated as function arguments. jl.mex expects the functions on which it is invoked to accept a single argument of type Vector{MxArray} and to return an iterable collection of values on which mxarray may be successfully invoked (e.g., a value of type Vector{MxArray}).

See lmdif_test.m, lm.m, and lmdif.jl for a more complex example that exposes Optim.jl's Levenberg-Marquardt solver to MATLAB. It presents an example of a MATLAB function handle being passed to Julia and used as acallback. (The default marshaling wraps matlab function handles in an anonymous function.)

Known Issues

  • On Windows, if a julia is on the path it must be the one against which mexjulia is built.

相关阅读

相关文章

相关问答

相关文档