从容器、可迭代对象谈起
所有的容器都是可迭代的(iterable),迭代器提供了一个next方法。iter()返回一个迭代器,通过next()函数可以实现遍历。
def is_iterable(param): try: iter(param) return True except TypeError: return False params = [ 1234, '1234', [1, 2, 3, 4], set([1, 2, 3, 4]), {1:1, 2:2, 3:3, 4:4}, (1, 2, 3, 4) ] for param in params: print('{} is iterable? {}'.format(param, is_iterable(param))) ########## 输出 ########## # 1234 is iterable? False # 1234 is iterable? True # [1, 2, 3, 4] is iterable? True # {1, 2, 3, 4} is iterable? True # {1: 1, 2: 2, 3: 3, 4: 4} is iterable? True # (1, 2, 3, 4) is iterable? True
除了数字外,其他数据结构都是可迭代的。
生成器是什么
生成器是懒人版本的迭代器。例:
import os import psutil #显示当前 python 程序占用的内存大小 def show_memory_info(hint): pid = os.getpid() p = psutil.Process(pid) info = p.memory_full_info() memory = info.uss / 1024. / 1024 print('{} memory used: {} MB'.format(hint, memory)) def test_iterator(): show_memory_info('initing iterator') list_1 = [i for i in range(100000000)] show_memory_info('after iterator initiated') print(sum(list_1)) show_memory_info('after sum called') def test_generator(): show_memory_info('initing generator') list_2 = (i for i in range(100000000)) show_memory_info('after generator initiated') print(sum(list_2)) show_memory_info('after sum called') test_iterator() test_generator() %time test_iterator() %time test_generator() ######### 输出 ########## initing iterator memory used: 48.9765625 MB after iterator initiated memory used: 3920.30078125 MB 4999999950000000 after sum called memory used: 3920.3046875 MB Wall time: 17 s initing generator memory used: 50.359375 MB after generator initiated memory used: 50.359375 MB 4999999950000000 after sum called memory used: 50.109375 MB Wall time: 12.5 s
[i for i in range(100000000)] 声明了一个迭代器,每个元素在生成后都会保存到内存中,占用了巨量的内存。(i for i in range(100000000)) 初始化了一个生成器,可以看到,生成器并不会像迭代器一样占用大量的内存,相比于 test_iterator(),test_generator()函数节省了一次生成一亿个元素的过程。在调用next()的时候,才会生成下一个变量.
生成器能玩啥花样
数学中有一个恒等式,(1 + 2 + 3 + ... + n)^2 = 1^3 + 2^3 + 3^3 + ... + n^3,用以下代码表达
def generator(k): i = 1 while True: yield i ** k i += 1 gen_1 = generator(1) gen_3 = generator(3) print(gen_1) print(gen_3) def get_sum(n): sum_1, sum_3 = 0, 0 for i in range(n): next_1 = next(gen_1) next_3 = next(gen_3) print('next_1 = {}, next_3 = {}'.format(next_1, next_3)) sum_1 += next_1 sum_3 += next_3 print(sum_1 * sum_1, sum_3) get_sum(8) ########## 输出 ########## # <generator object generator at 0x000001E70651C4F8> # <generator object generator at 0x000001E70651C390> # next_1 = 1, next_3 = 1 # next_1 = 2, next_3 = 8 # next_1 = 3, next_3 = 27 # next_1 = 4, next_3 = 64 # next_1 = 5, next_3 = 125 # next_1 = 6, next_3 = 216 # next_1 = 7, next_3 = 343 # next_1 = 8, next_3 = 512 # 1296 1296
generator()这个函数,它返回了一个生成器,当运行到yield i ** k时,暂停并把i ** k作为next()的返回值。每次调用next(gen)时,暂停的程序会启动并往下执行,而且i的值也会被记住,继续累加,最后next_1为8,next_3为512.
仔细查看这个示例,发现迭代器是一个有限集合,生成器则可以成为一个无限集。调用next(),生成器根据运算会自动生成新的元素,然后返回给你,非常便捷。
再来看一个问题:给定一个list和一个指定数字,求这个数字在list中的位置:
#常规写法 def index_normal(L, target): result = [] for i, num in enumerate(L): if num == target: result.append(i) return result print(index_normal([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2)) ########## 输出 ########## [2, 5, 9] #生成器写法 def index_generator(L, target): for i, num in enumerate(L): if num == target: yield i print(list(index_generator([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2))) ######### 输出 ########## [2, 5, 9]
再看一例子:
查找子序列:给定两个字符串a,b,查找字符串a是否字符串b的子序列,所谓子序列,即一个序列包含在另一个序列中并且顺序一
算法:分别用两个指针指向两个字符串的头,然后往后移动找出相同的值,如果其中一个指针走完了整个字符串也没有相同的值,则不是子序列
def is_subsequence(a, b): b = iter(b) return all(i in b for i in a) print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5])) print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5])) ######### 输出 ########## True False
下面代码为上面代码的演化版本
def is_subsequence(a, b): b = iter(b) print(b) gen = (i for i in a) print(gen) for i in gen: print(i) gen = ((i in b) for i in a) print(gen) for i in gen: print(i) return all(((i in b) for i in a)) print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5])) print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5])) ########## 输出 ########## # <list_iterator object at 0x000001E7063D0E80> # <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570> # 1 # 3 # 5 # <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8> # True # True # True # False # <list_iterator object at 0x000001E7063D0D30> # <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8> # 1 # 4 # 3 # <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570> # True # True # False # False
首先iter(b)把b转为迭代器。目的是内部实现next函数,(i for i in a) 会产生一个生成器 ,同样((i in b) for i in a)也是。然后(i in b)等阶于:
while True: val = next(b) if val == i: yield True
这里非常巧妙地利用生成器的特性,next()函数运行的时候,保存了当前的指针。比如下面这个示例
b = (i for i in range(5)) print(2 in b) print(4 in b) print(3 in b) ########## 输出 ########## True True False
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍python生成器与迭代器详解,包括了python生成器与迭代器详解的使用技巧和注意事项,需要的朋友参考一下 列表生成式: 例一: a = [i+1 for i in range(10)] print(a) 输出: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 例二: L = [1, 2, 3, 4, 5] print([i*i for i in L if i>3]
本文向大家介绍python迭代器与生成器详解,包括了python迭代器与生成器详解的使用技巧和注意事项,需要的朋友参考一下 例子 老规矩,先上一个代码: 这个东西输出可以脑补一下, 结果是[20,21,22,23], 而不是[10, 11, 12, 13]。 当时纠结了半天,一直没搞懂,后来齐老师稍微指点了一下, 突然想明白了--真够笨的,唉。。好了--正好趁机会稍微小结一下python里面的生成
本文向大家介绍Python迭代器与可迭代与生成器,包括了Python迭代器与可迭代与生成器的使用技巧和注意事项,需要的朋友参考一下 示例 一个迭代是一个对象,可以返回一个迭代器。具有状态且具有__iter__ 方法并返回迭代器的任何对象都是可迭代的。也可能是没有状态的对象,该对象实现了__getitem__方法。-该方法可以获取索引(从零开始),并IndexError在索引不再有效时引发。 Py
本文向大家介绍详解python中的生成器、迭代器、闭包、装饰器,包括了详解python中的生成器、迭代器、闭包、装饰器的使用技巧和注意事项,需要的朋友参考一下 迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。 1|1可迭代对象 以直接作用于 for 循环的数据类型有以下几种: 一类是集合数
本文向大家介绍Python进阶之迭代器与迭代器切片教程,包括了Python进阶之迭代器与迭代器切片教程的使用技巧和注意事项,需要的朋友参考一下 在前两篇关于 Python 切片的文章中,我们学习了切片的基础用法、高级用法、使用误区,以及自定义对象如何实现切片用法(相关链接见文末)。本文是切片系列的第三篇,主要内容是迭代器切片。 迭代器是 Python 中独特的一种高级特性,而切片也是一种高级特性,
本文向大家介绍JavaScript中的迭代器和生成器详解,包括了JavaScript中的迭代器和生成器详解的使用技巧和注意事项,需要的朋友参考一下 处理集合里的每一项是一个非常普通的操作,JavaScript提供了许多方法来迭代一个集合,从简单的for和for each循环到 map(),filter() 和 array comprehensions(数组推导式)。在JavaScript 1.7中