当前位置: 首页 > 编程笔记 >

Python进阶:生成器 懒人版本的迭代器详解

农明辉
2023-03-14
本文向大家介绍Python进阶:生成器 懒人版本的迭代器详解,包括了Python进阶:生成器 懒人版本的迭代器详解的使用技巧和注意事项,需要的朋友参考一下

从容器、可迭代对象谈起

所有的容器都是可迭代的(iterable),迭代器提供了一个next方法。iter()返回一个迭代器,通过next()函数可以实现遍历

def is_iterable(param):
try: 
iter(param) 
return True
except TypeError:
return False
params = [
1234,
'1234',
[1, 2, 3, 4],
set([1, 2, 3, 4]),
{1:1, 2:2, 3:3, 4:4},
(1, 2, 3, 4)
]
for param in params:
print('{} is iterable? {}'.format(param, is_iterable(param)))
########## 输出 ##########
# 1234 is iterable? False
# 1234 is iterable? True
# [1, 2, 3, 4] is iterable? True
# {1, 2, 3, 4} is iterable? True
# {1: 1, 2: 2, 3: 3, 4: 4} is iterable? True
# (1, 2, 3, 4) is iterable? True

除了数字外,其他数据结构都是可迭代的。

生成器是什么

生成器是懒人版本的迭代器。例:

import os
import psutil

#显示当前 python 程序占用的内存大小
def show_memory_info(hint):
pid = os.getpid()
p = psutil.Process(pid)

info = p.memory_full_info()
memory = info.uss / 1024. / 1024
print('{} memory used: {} MB'.format(hint, memory))

def test_iterator():
show_memory_info('initing iterator')
list_1 = [i for i in range(100000000)]
show_memory_info('after iterator initiated')
print(sum(list_1))
show_memory_info('after sum called')

def test_generator():
show_memory_info('initing generator')
list_2 = (i for i in range(100000000))
show_memory_info('after generator initiated')
print(sum(list_2))
show_memory_info('after sum called')

test_iterator()
test_generator()
%time test_iterator()
%time test_generator()

######### 输出 ##########

initing iterator memory used: 48.9765625 MB
after iterator initiated memory used: 3920.30078125 MB
4999999950000000
after sum called memory used: 3920.3046875 MB
Wall time: 17 s
initing generator memory used: 50.359375 MB
after generator initiated memory used: 50.359375 MB
4999999950000000
after sum called memory used: 50.109375 MB
Wall time: 12.5 s

[i for i in range(100000000)] 声明了一个迭代器,每个元素在生成后都会保存到内存中,占用了巨量的内存。(i for i in range(100000000)) 初始化了一个生成器,可以看到,生成器并不会像迭代器一样占用大量的内存,相比于 test_iterator(),test_generator()函数节省了一次生成一亿个元素的过程。在调用next()的时候,才会生成下一个变量.

生成器能玩啥花样

数学中有一个恒等式,(1 + 2 + 3 + ... + n)^2 = 1^3 + 2^3 + 3^3 + ... + n^3,用以下代码表达

def generator(k):
i = 1
while True:
yield i ** k
i += 1

gen_1 = generator(1)
gen_3 = generator(3)
print(gen_1)
print(gen_3)

def get_sum(n):
sum_1, sum_3 = 0, 0
for i in range(n):
next_1 = next(gen_1)
next_3 = next(gen_3)
print('next_1 = {}, next_3 = {}'.format(next_1, next_3))
sum_1 += next_1
sum_3 += next_3
print(sum_1 * sum_1, sum_3)

get_sum(8)

########## 输出 ##########

# <generator object generator at 0x000001E70651C4F8>
# <generator object generator at 0x000001E70651C390>
# next_1 = 1, next_3 = 1
# next_1 = 2, next_3 = 8
# next_1 = 3, next_3 = 27
# next_1 = 4, next_3 = 64
# next_1 = 5, next_3 = 125
# next_1 = 6, next_3 = 216
# next_1 = 7, next_3 = 343
# next_1 = 8, next_3 = 512
# 1296 1296

generator()这个函数,它返回了一个生成器,当运行到yield i ** k时,暂停并把i ** k作为next()的返回值。每次调用next(gen)时,暂停的程序会启动并往下执行,而且i的值也会被记住,继续累加,最后next_1为8,next_3为512.

仔细查看这个示例,发现迭代器是一个有限集合,生成器则可以成为一个无限集。调用next(),生成器根据运算会自动生成新的元素,然后返回给你,非常便捷。

再来看一个问题:给定一个list和一个指定数字,求这个数字在list中的位置:

#常规写法
def index_normal(L, target):
result = []
for i, num in enumerate(L):
if num == target:
result.append(i)
return result
print(index_normal([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2))
########## 输出 ##########
[2, 5, 9]
#生成器写法
def index_generator(L, target):
for i, num in enumerate(L):
if num == target:
yield i
print(list(index_generator([1, 6, 2, 4, 5, 2, 8, 6, 3, 2], 2)))
######### 输出 ##########
[2, 5, 9]

再看一例子:

查找子序列:给定两个字符串a,b,查找字符串a是否字符串b的子序列,所谓子序列,即一个序列包含在另一个序列中并且顺序一

算法:分别用两个指针指向两个字符串的头,然后往后移动找出相同的值,如果其中一个指针走完了整个字符串也没有相同的值,则不是子序列

def is_subsequence(a, b):
b = iter(b)
return all(i in b for i in a)
print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))
######### 输出 ##########
True
False

下面代码为上面代码的演化版本

def is_subsequence(a, b):
b = iter(b)
print(b)

gen = (i for i in a)
print(gen)

for i in gen:
print(i)

gen = ((i in b) for i in a)
print(gen)

for i in gen:
print(i)

return all(((i in b) for i in a))

print(is_subsequence([1, 3, 5], [1, 2, 3, 4, 5]))
print(is_subsequence([1, 4, 3], [1, 2, 3, 4, 5]))

########## 输出 ##########

# <list_iterator object at 0x000001E7063D0E80>
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570>
# 1
# 3
# 5
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8>
# True
# True
# True
# False
# <list_iterator object at 0x000001E7063D0D30>
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C5E8>
# 1
# 4
# 3
# <generator object is_subsequence.<locals>.<genexpr> at 0x000001E70651C570>
# True
# True
# False
# False

首先iter(b)把b转为迭代器。目的是内部实现next函数,(i for i in a) 会产生一个生成器 ,同样((i in b) for i in a)也是。然后(i in b)等阶于:

while True:
val = next(b)
if val == i:
yield True

这里非常巧妙地利用生成器的特性,next()函数运行的时候,保存了当前的指针。比如下面这个示例

b = (i for i in range(5))
print(2 in b)
print(4 in b)
print(3 in b)
########## 输出 ##########
True
True
False

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍python生成器与迭代器详解,包括了python生成器与迭代器详解的使用技巧和注意事项,需要的朋友参考一下 列表生成式: 例一: a = [i+1 for i in range(10)] print(a) 输出: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 例二: L = [1, 2, 3, 4, 5] print([i*i for i in L if i>3]

  • 本文向大家介绍python迭代器与生成器详解,包括了python迭代器与生成器详解的使用技巧和注意事项,需要的朋友参考一下 例子 老规矩,先上一个代码: 这个东西输出可以脑补一下, 结果是[20,21,22,23], 而不是[10, 11, 12, 13]。 当时纠结了半天,一直没搞懂,后来齐老师稍微指点了一下, 突然想明白了--真够笨的,唉。。好了--正好趁机会稍微小结一下python里面的生成

  • 本文向大家介绍Python迭代器与可迭代与生成器,包括了Python迭代器与可迭代与生成器的使用技巧和注意事项,需要的朋友参考一下 示例 一个迭代是一个对象,可以返回一个迭代器。具有状态且具有__iter__  方法并返回迭代器的任何对象都是可迭代的。也可能是没有状态的对象,该对象实现了__getitem__方法。-该方法可以获取索引(从零开始),并IndexError在索引不再有效时引发。 Py

  • 本文向大家介绍详解python中的生成器、迭代器、闭包、装饰器,包括了详解python中的生成器、迭代器、闭包、装饰器的使用技巧和注意事项,需要的朋友参考一下 迭代是访问集合元素的一种方式。迭代器是一个可以记住遍历的位置的对象。迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。 1|1可迭代对象 以直接作用于 for 循环的数据类型有以下几种: 一类是集合数

  • 本文向大家介绍Python进阶之迭代器与迭代器切片教程,包括了Python进阶之迭代器与迭代器切片教程的使用技巧和注意事项,需要的朋友参考一下 在前两篇关于 Python 切片的文章中,我们学习了切片的基础用法、高级用法、使用误区,以及自定义对象如何实现切片用法(相关链接见文末)。本文是切片系列的第三篇,主要内容是迭代器切片。 迭代器是 Python 中独特的一种高级特性,而切片也是一种高级特性,

  • 本文向大家介绍JavaScript中的迭代器和生成器详解,包括了JavaScript中的迭代器和生成器详解的使用技巧和注意事项,需要的朋友参考一下 处理集合里的每一项是一个非常普通的操作,JavaScript提供了许多方法来迭代一个集合,从简单的for和for each循环到 map(),filter() 和 array comprehensions(数组推导式)。在JavaScript 1.7中