本文假设你在 GitHub 上已经有一个想要打包和发布的项目。
第 0 步:获取项目许可证
在做其他事之前,由于你的项目要开源,因此应该有一个许可证。获取哪种许可证取决于项目包的使用方式。开源项目中一些常见许可证有 MIT 或 BSD。
要在项目中添加许可证,只需参照以下链接中的步骤,将 LICENSE 文件添加到项目库中的根目录即可: https://help.github.com/en/articles/adding-a-license-to-a-repository
第 1 步:让你的代码准备就绪
要将项目进行打包,你需要做一些预备工作:
from .estimate import Estimator
以__init__.py 为例,如果 Estimator 是终端用户将会访问的类(该类在 estimate.py 文件中定义)
import logging class LogMixin(object): @property def logger(self): name = '.'.join([self.__module__, self.__class__.__name__]) FORMAT = '%(name)s:%(levelname)s:%(message)s' logging.basicConfig(format=FORMAT, level=logging.DEBUG) logger = logging.getLogger(name) return logger
以日志系统为例:LogMixin 类可以在其他任何类中使用
第 2 步:使用打包工具创建 setup.py
在你的项目有了一套结构之后,你应该在项目库的根目录下添加 setup.py 文件。这有助于所有发布和版本维护过程的自动化。以下是 setup.py 的例子(源代码:https://github.com/nathan-toubiana/scitime/blob/master/setup.py)。
from setuptools import setup from os import path DIR = path.dirname(path.abspath(__file__)) INSTALL_PACKAGES = open(path.join(DIR, 'requirements.txt')).read().splitlines() with open(path.join(DIR, 'README.md')) as f: README = f.read() setup( name='scitime', packages=['scitime'], description="Training time estimator for scikit-learn algorithms", long_description=README, long_description_content_type='text/markdown', install_requires=INSTALL_PACKAGES, version='0.0.2', url='http://github.com/nathan-toubiana/scitime', author='Gabriel Lerner & Nathan Toubiana', author_email='toubiana.nathan@gmail.com', keywords=['machine-learning', 'scikit-learn', 'training-time'], tests_require=[ 'pytest', 'pytest-cov', 'pytest-sugar' ], package_data={ # include json and pkl files '': ['*.json', 'models/*.pkl', 'models/*.json'], }, include_package_data=True, python_requires='>=3' )
setup.py 文件的示例
几点注意事项:
注意:第 3 步到第 6 步是可选的(但强烈推荐),但是如果你现在马上想发布你的包,可以直接跳到第 7 步。
第 3 步:设置本地测试和检查测试覆盖率
此时还没有完成,你的项目还应该有单元测试。尽管有许多框架能帮助你做到,但一种简单的方法是使用 pytest。所有测试都应该放在一个专用的文件夹中(例如名为 tests/或 testing 的文件夹)。在这个文件夹中放置你需要的所有测试文件,以便尽可能多地包含你的核心代码。下面是一个如何编写单元测试的示例。这里还有一个 SciTime 的测试文件。
一旦就位,你就可以通过在项目库的根目录运行 python -m pytest 在本地进行测试。
创建测试后,你还应该能估算覆盖率。这一点很重要,因为你希望尽可能多地测试项目中的代码量(以减少意外的 bug)。
很多框架也可以用于计算覆盖率,对于 SciTime,我们使用了 codecov。你可以通过创建.codecov.yml 文件来决定允许的最小覆盖率阈值,还可以通过创建.coveragerc 文件来决定要在覆盖率分析中包含哪些文件。
comment: false coverage: status: project: default: target: auto threshold: 10% patch: default: target: auto threshold: 10%
.codecov.yml 文件示例
[run] branch = True source = scitime include = */scitime/* omit = */_data.py */setup.py
coveragerc 文件示例
第 4 步:标准化语法和代码风格
你还需要确保你的代码遵循 PEP8 准则(即具有标准样式并且语法正确)。同样,有很多工具可以帮助你解决。这里我们用了 flake8。
第 5 步:创建一个合理的文档
现在你的项目已经测试过了,结构也很好了,是时候添加一个合理的文档。首先是要有一个好的 readme 文件,它会在你的 Github 项目库的根目录上显示。完成后,加上以下几点会更好:
由于 readme 文件应该相当综合,因此通常会有一个更详细的文档。你可以用 sphinx 来完成,然后在 readthedocs 上管理文档。与文档相关的文件通常放在 docs/文件夹中。sphinx 和 readthedocs 相关教程:
https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html。
包含标签和说明的项目库示例
第 6 步:创建持续集成
此时,你的项目离发布就绪不远了。但是,在每次提交之后,必须更新文档、运行测试以及检查样式和覆盖率似乎有点难以应付。幸运的是,持续集成(CI)可以帮助你完成。你可以在每次提交之后使用 GitHub 的 webhook 来自动执行所有的这些操作。以下是我们在 SciTime 中使用的一套 CI 工具:
language: python python: - "3.6" # command to install dependencies install: - pip install -r requirements.txt - pip install flake8 - pip install pytest-cov - pip install codecov # command to run tests script: - python -m pytest --cov=scitime - ./build_tools/flake_diff.sh after_success: - codecov
.travis.yml 文件的示例:请注意,每次提交,测试都需要与检查测试覆盖率一起进行。但还有一个 flake8 检查(逻辑则在 flake_diff.sh 文件中定义:https://github.com/nathan-toubiana/scitime/blob/master/build_tools/flake_diff.sh)
environment: matrix: - PYTHON: "C:Python36-x64" install: # We need wheel installed to build wheels - "%PYTHON%python.exe -m pip install -r requirements.txt" - "%PYTHON%python.exe -m pip install pytest==3.2.1" build: off test_script: - "%PYTHON%python.exe -m pytest"
appveyor.yml 文件示例:这里我们只运行测试
这将使更新项目库的整个过程更加容易。
集成 webhook 的提交历史记录示例
第 7 步:创建你的第一个 release 和 publication
此时,你即将发布的包应与以下类似:
your_package/ __init__.py your_module.py docs/ tests/ setup.py travis.yml appveyor.yml .coveragerc .codecov.yml README.md LICENSE .github/ CODE_OF_CONDUCT.md CONTRIBUTING.md PULL_REQUEST_TEMPLATE.md ISSUE_TEMPLATE/
现在可以发布了!首先要做的是在 GitHub 上创建你的第一个 release——这是为了在给定的时间点跟踪项目的状态,每次版本更改时都需要创建新的 release。
完成后,唯一要做的就是发布包。发布 python 包最常见的平台是 PyPI 和 Conda。以下我们将描述如何用两者发布:
完成!
现在,你的包应该已经发出去,并且任何人都可以使用了!虽然大部分工作都完成了,但是你仍然需要维护你的项目,你需要进行一些更新:这大体上意味着每次进行重大更改时都要更改版本,创建新的 release,并再次执行第 7 步。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。
本文向大家介绍Android开源项目PullToRefresh下拉刷新功能详解,包括了Android开源项目PullToRefresh下拉刷新功能详解的使用技巧和注意事项,需要的朋友参考一下 先看看效果图: 开源项地址:https://github.com/chrisbanes/Android-PullToRefresh 下拉刷新这个功能我们都比较常见了,今天介绍的就是这个功能的实现。我将按照这
本文向大家介绍IDEA 通过docker插件发布springboot项目的详细教程,包括了IDEA 通过docker插件发布springboot项目的详细教程的使用技巧和注意事项,需要的朋友参考一下 一、编写Dockerfile文件 (1)右键项目名,新建一个文本文件,把名字改成Dockerfile,不用后缀。放在项目根目录下。 (2)填写Dockerfile内容 FROM openjdk:8
本文向大家介绍vue-cli3.0 脚手架搭建项目的过程详解,包括了vue-cli3.0 脚手架搭建项目的过程详解的使用技巧和注意事项,需要的朋友参考一下 1.安装vue-cli 3.0 安装成功后查看版本:vue -V(大写的V) 2.命令变化 用法:create [options] <app-name> 创建一个由 `vue-cli-service` 提供支持的新项目 选项: -p, --
(1). 软件开发过程的划分 本规定对一个完整的开发过程按“软件过程改进方法和规范”把产品生命周期划分为 6 个阶段: 产品概念阶段(记为 PH0) 产品定义阶段(记为 PH1) 产品开发阶段(记为 PH2) 产品测试阶段(记为 PH3) 用户验收阶段(记为 PH4) 产品维护阶段(记为 PH5) 软件项目的过程有三大类: 项目管理过程、项目研发过程和机构支持过程。 而这三类过程可以细分为19个主
本文向大家介绍Python代码的打包与发布详解,包括了Python代码的打包与发布详解的使用技巧和注意事项,需要的朋友参考一下 在python程序中,一个.py文件被当作一个模块,在各个模块中定义了不同的函数。当我们要使用某一个模块中的某一个函数时,首先须将这个模块导入,否则就会出现函数未定义的情况. 下面记录的是打包及安装包的方法。 本文示例是建立一个模拟登录的程序: logIn.py文件代码如
我在Vagrant盒子中通过RVM建立了Ruby和Rails。在RubyMine中,我成功地将该框添加为部署服务器,并在<code>Ruby SDK和Gems</code>窗口中添加了远程rvm Ruby解释器。 但是,当我打开对话框并选择(Rails)时,在和下拉菜单中没有选择SDK。 SDK 下拉列表中唯一可用的项是此项将打开“”文件浏览器窗口,但我只能在本地浏览。 因此,我无法在远程设备上创