为了查看网络训练的效果或者便于调参、更改结构等,我们常常将训练网络过程中的loss、accurcy等参数。
除此之外,有时我们也想要查看训练好的网络中间层输出和卷积核上面表达了什么内容,这可以帮助我们思考CNN的内在机制、调整网络结构或者把这些可视化内容贴在论文当中辅助说明训练的效果等。
中间层和卷积核的可视化有多种方法,整理如下:
1. 以矩阵(matrix)格式手动输出图像:
用简单的LeNet网络训练MNIST数据集作为示例:
x = tf.placeholder(tf.float32, [None, 784]) x_image = tf.reshape(x, [-1,28,28,1]) W_conv1 = weight_variable([5, 5, 1, 32]) # 第一个卷积层的32个卷积核 b_conv1 = bias_variable([32]) # 第一个卷积层: h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) h_pool1 = max_pool(h_conv1) # 第一个池化层
训练结束后,第一个卷积层共有32个5*5大小的卷积核:W_conv1,要可视化第10个卷积核:
from PIL import Image import numpy as np #from mnist_try001 import W_conv1 img1 = (W_conv1.eval()) # 将张量转换为numpy数组 W_conv1_10 = img1[:,:,:,9] W_conv1_10 = np.asmatrix(W_conv1_10) # 将数组转换为矩阵格式 W_conv1_10_visual = Image.fromarray(W_conv1_10 * 255.0 / W_conv1_10.max()) # 像素值归一化,Image.fromarray方法的输入范围是[0~255] W_conv1_10_visual.show()
2. 通过反卷积方式输出中间层和卷积核图像:
import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data x = tf.placeholder(tf.float32, [None, 784]) mnist = input_data.read_data_sets('/TensorflowCode/MNIST_data', one_hot=True) h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2) #14*14*64 # 可视化第二层输出的图像 input_image = mnist.train.images[100] # 输入一幅指定图像,mnist.train.images[100]尺寸为[784,],即1维:[1,784] conv2 = sess.run(h_conv2, feed_dict={x:input_image}) # [64, 14, 14 ,1] 若前面网络中加入了dropout,这里的feed_dict中不要忘记加上keep_prob: 0.5 conv2 = sess.run(tf.reshape(conv2 , [64, 1, 14, 14])) conv2 = np.sum(conv2,axis = 0) # 对中间层图像各通道求和,作为输出图像 h_conv1 = np.asmatrix(h_conv1) # 将conv2数组转换成矩阵格式 h_conv1 = Image.fromarray(h_conv1 * 255.0 / h_conv1.max()) # 矩阵数值归一化 h_conv1.show() # 输出14*14的灰度图像
可视化卷积核和上面的方法完全一样,把h_conv2改成卷积核就可以了(如W_conv1_10),可以同是输出多个卷积核。
中间层图像如下:(已经完全看不出是数字了)
或者用 matplotlib.pyplot代替上面的Image方法,可以直接输出彩色图像:
# 输出第一层的32个卷积核(5×5*32) import matplotlib.pyplot as plt input_image = mnist.train.images[100] W_conv1 = sess.run(W_conv1, feed_dict={x:input_image}) W_conv1 = sess.run(tf.reshape(conv1_16, [32, 1, 5, 5])) fig1,ax1 = plt.subplots(nrows=1, ncols=32, figsize = (32,1)) for i in range(32): ax1[i].imshow( W_conv1[i][0]) plt.title('W_conv1 32×5×5') plt.show()
以上这篇使用Tensorflow实现可视化中间层和卷积层就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持小牛知识库。
卷积神经网络有一个批量过滤器, 持续不断的在图片上滚动收集图片里的信息,每一次收集的时候都只是收集一小块像素区域, 然后把收集来的信息进行整理, 这时候整理出来的信息有了一些实际上的呈现, 比如这时的神经网络能看到一些边缘的图片信息, 然后在以同样的步骤, 用类似的批量过滤器扫过产生的这些边缘信息, 神经网络从这些边缘信息里面总结出更高层的信息结构,比如说总结的边缘能够画出眼睛,鼻子等等. 再经过
Convolution1D层 keras.layers.convolutional.Convolution1D(nb_filter, filter_length, init='uniform', activation='linear', weights=None, border_mode='valid', subsample_length=1, W_regularizer=None, b_regu
Conv1D层 keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilation_rate=1, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zero
本文向大家介绍TensorFlow tf.nn.conv2d实现卷积的方式,包括了TensorFlow tf.nn.conv2d实现卷积的方式的使用技巧和注意事项,需要的朋友参考一下 实验环境:tensorflow版本1.2.0,python2.7 介绍 惯例先展示函数: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=
本文向大家介绍卷积层和池化层有什么区别相关面试题,主要包含被问及卷积层和池化层有什么区别时的应答技巧和注意事项,需要的朋友参考一下 参考回答: 卷积层 池化层 功能 提取特征 压缩特征图,提取主要特征 操作 可惜是二维的,对于三维数据比如RGB图像(3通道),卷积核的深度必须同输入的通道数,输出的通道数等于卷积核的个数。卷积操作会改变输入特征图的通道数。 池化只是在二维数据上操作的,因此不改变
该脚本可以在几分钟内在 CPU 上运行完。 结果示例: from __future__ import print_function import time import numpy as np from PIL import Image as pil_image from keras.preprocessing.image import save_img from keras import la