当前位置: 首页 > 编程笔记 >

Sql Server中的非聚集索引详细介

岳研
2023-03-14
本文向大家介绍Sql Server中的非聚集索引详细介,包括了Sql Server中的非聚集索引详细介的使用技巧和注意事项,需要的朋友参考一下

  非聚集索引,这个是大家都非常熟悉的一个东西,有时候我们由于业务原因,sql写的非常复杂,需要join很多张表,然后就泪流满面了。。。这时候就有DBA或者资深的开发给你看这个猥琐的sql,通过执行计划一分析。。。或许就看出了不该有的表扫描。。。万恶之源。。。然后给你在关键的字段加上非聚集索引后。。。才发现提速比阿斯顿马丁还要快。。。那么一个问题来了,为什么非聚集索引能提速这么快。。。怎么做到的???是不是非常的好奇???

这篇我们来解开神秘面纱。

 一:现象

      先让我们一睹非聚集索引的真容,看看到底在执行计划看来是个什么玩意。。。我这里有个product表,里面灌了8w多数据,然后在Name列上建立

一个非聚集索引,就像下图一样:

  

从上图中看到了两个好玩的东西,一个就是我想看到的“索引查找[nonclustered]”,这个大家很熟悉,也是这篇要说的,然后我们还看到了一个“RID查找”,乍一看这是什么鸡巴玩意。。。非聚集索引跟它扯上什么关系了???

二:什么是RID

  通过前面几篇,我想大家都知道了数据页中的记录是如何寻找的?秘密就是通过slot槽位中的偏移量决定的,那问题来了,如果上升到数据页层面,我只需要(pageID:slotID)就可以找到记录了,对不对?那如果我上升了文件层面,那是不是只需要知道(fileID:pageID:slotID)就可以找到数据页中的 记录了?其实这里的RID就是站在文件的高度通过(fileID:pageID:slotID)找到表记录的。。。既RID=RowID=(fileID:pageID:slotID),如果你非要眼见实的话,在sq中l还真提供了这么个函数(sys.fn_PhysLocFormatter(%%physloc%%)),我们看下图:

看了上面的图,是不是很兴奋,一目了然,比如productID=18088这条记录,然来是在1号文件,34941号数据页,0号槽位上,productID=18089是在1号槽位上,好了,当你知道RID是个什么东西的时候,我想你已经离彻底理解非聚集索引不远啦。。。

 三:非聚集索引

  有一点我们肯定知道,就是非聚集索引是可以加速查找的,要是跟表扫描那样的龟速,那也就失去了索引的目的,既然能加速,是因为它和聚集索引一样,在底层都玩起了B树,首先我们插入一些样例数据。

DROP TABLE dbo.Person

CREATE TABLE Person(ID INT IDENTITY,NAME CHAR(900))
CREATE INDEX idx_Person_Name ON dbo.Person(Name)

DECLARE @ch AS INT=97

WHILE @ch<=122
BEGIN
  INSERT INTO dbo.Person VALUES(REPLICATE(CHAR(@ch),5))
  SET @ch=@ch+1
END

上面的sql,我故意在Name列设置为900个char,这也是索引的上限值,这样的话,我DBCC就可以导出很多数据页和索引页了。

可以看到,当我dbcc ind 的时候,发现Person表中已经有4个数据页,5个索引页,其中151号数据页是表跟踪页,174号为索引跟踪页,这也就说明当我建立索引后,引擎给我们分配了专门的索引页来存放我们建立的Name索引,那下一步就是我们来看看这些索引中都存放着什么,这也是我非常关心的,接下来我导出173号索引页。


 DBCC PAGE(Ctrip,1,173,1)

Slot 0, Offset 0x60, Length 912, DumpStyle BYTE

Record Type = INDEX_RECORD      Record Attributes = NULL_BITMAP   Record Size = 912

Memory Dump @0x000000000EF1C060

0000000000000000:  16616161 61612020 20202020 20202020 †.aaaaa      
0000000000000010:  20202020 20202020 20202020 20202020 †         
0000000000000020:  20202020 20202020 20202020 20202020 †         
0000000000000030:  20202020 20202020 20202020 20202020 †         
0000000000000040:  20202020 20202020 20202020 20202020 †         
0000000000000050:  20202020 20202020 20202020 20202020 †         
0000000000000060:  20202020 20202020 20202020 20202020 †         
0000000000000070:  20202020 20202020 20202020 20202020 †         
0000000000000080:  20202020 20202020 20202020 20202020 †         
0000000000000090:  20202020 20202020 20202020 20202020 †         
00000000000000A0:  20202020 20202020 20202020 20202020 †         
00000000000000B0:  20202020 20202020 20202020 20202020 †         
00000000000000C0:  20202020 20202020 20202020 20202020 †         
00000000000000D0:  20202020 20202020 20202020 20202020 †         
00000000000000E0:  20202020 20202020 20202020 20202020 †         
00000000000000F0:  20202020 20202020 20202020 20202020 †         
0000000000000100:  20202020 20202020 20202020 20202020 †         
0000000000000110:  20202020 20202020 20202020 20202020 †         
0000000000000120:  20202020 20202020 20202020 20202020 †         
0000000000000130:  20202020 20202020 20202020 20202020 †         
0000000000000140:  20202020 20202020 20202020 20202020 †         
0000000000000150:  20202020 20202020 20202020 20202020 †         
0000000000000160:  20202020 20202020 20202020 20202020 †         
0000000000000170:  20202020 20202020 20202020 20202020 †         
0000000000000180:  20202020 20202020 20202020 20202020 †         
0000000000000190:  20202020 20202020 20202020 20202020 †         
00000000000001A0:  20202020 20202020 20202020 20202020 †         
00000000000001B0:  20202020 20202020 20202020 20202020 †         
00000000000001C0:  20202020 20202020 20202020 20202020 †         
00000000000001D0:  20202020 20202020 20202020 20202020 †         
00000000000001E0:  20202020 20202020 20202020 20202020 †         
00000000000001F0:  20202020 20202020 20202020 20202020 †         
0000000000000200:  20202020 20202020 20202020 20202020 †         
0000000000000210:  20202020 20202020 20202020 20202020 †         
0000000000000220:  20202020 20202020 20202020 20202020 †         
0000000000000230:  20202020 20202020 20202020 20202020 †         
0000000000000240:  20202020 20202020 20202020 20202020 †         
0000000000000250:  20202020 20202020 20202020 20202020 †         
0000000000000260:  20202020 20202020 20202020 20202020 †         
0000000000000270:  20202020 20202020 20202020 20202020 †         
0000000000000280:  20202020 20202020 20202020 20202020 †         
0000000000000290:  20202020 20202020 20202020 20202020 †         
00000000000002A0:  20202020 20202020 20202020 20202020 †         
00000000000002B0:  20202020 20202020 20202020 20202020 †         
00000000000002C0:  20202020 20202020 20202020 20202020 †         
00000000000002D0:  20202020 20202020 20202020 20202020 †         
00000000000002E0:  20202020 20202020 20202020 20202020 †         
00000000000002F0:  20202020 20202020 20202020 20202020 †         
0000000000000300:  20202020 20202020 20202020 20202020 †         
0000000000000310:  20202020 20202020 20202020 20202020 †         
0000000000000320:  20202020 20202020 20202020 20202020 †         
0000000000000330:  20202020 20202020 20202020 20202020 †         
0000000000000340:  20202020 20202020 20202020 20202020 †         
0000000000000350:  20202020 20202020 20202020 20202020 †         
0000000000000360:  20202020 20202020 20202020 20202020 †         
0000000000000370:  20202020 20202020 20202020 20202020 †         
0000000000000380:  20202020 20940000 00010000 00020000 †   ...........


Row - Offset                         

7 (0x7) - 6480 (0x1950)              

6 (0x6) - 5568 (0x15c0)              

5 (0x5) - 4656 (0x1230)              

4 (0x4) - 3744 (0xea0)               

3 (0x3) - 2832 (0xb10)               

2 (0x2) - 1920 (0x780)               

1 (0x1) - 1008 (0x3f0)               

0 (0x0) - 96 (0x60)

 

从上面至少可以发现三个有趣的现象:

<1>:173号索引页中slot0和slot1槽位指向记录的内容已经有序了,比如:aaaaa,bbbbb。。。。这样。。。。原来非聚集索引也是有序呀。。。

<2>:6161616161就是16进制的aaaaa。

    9400000001000000 :这几个数字非常重要,因为是16进制表示,所以2位16进制表示一个字节,所以可以这么解释,前面4个字节表示

    pageID,中间2个字节表示fileID,后面2个字节表示slot,看到这里你是不是想起了RID。。。因为RID就是这三样的组合。。。原来非聚集索

   引的记录存放的就是“key+RowID”呀。。。。

<3>:通过最后的槽位列表,可以得知173号索引页上存放着8条索引记录。

 

  好了,看完了叶子节点,我们再看分支节点,也就是IndexLevel=1的那条索引数据页,也就是78号。ok,dbcc看看吧。

当看到这个列表的时候,不知道你脑子里面是不是有一幅图出来了,就像上一篇看到聚集索引一样,因为它的结构和聚集索引非常像,只不过非聚集索引这里多了一个RID而已。。。最后我也把图贡献一下。

 

总结一下:在走非聚集索引的时候,比如你的条件是where name='jjjjj' 时,它的逻辑是这样的,根据78号索引数据页的key的范围,然后通过rowid走到了79号索引数据页,然后在79号索引数据页中顺利的找到了jjjjj,这时候就可以拿出jjjjj的rowid去表数据页中直接定位记录,最后输出。。。。。这个也就是博客开头的地方为什么会出现RID的查找。。。

 类似资料:
  • 本文向大家介绍sql 聚集索引和非聚集索引(详细整理),包括了sql 聚集索引和非聚集索引(详细整理)的使用技巧和注意事项,需要的朋友参考一下 聚集索引    一种索引,该索引中键值的逻辑顺序决定了表中相应行的物理顺序。 聚集索引确定表中数据的物理顺序。聚集索引类似于电话簿,后者按姓氏排列数据。由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引。但该索引可以包含多个列(组合索

  • 本文向大家介绍SQL Server中的聚集索引和非聚集索引之间的区别,包括了SQL Server中的聚集索引和非聚集索引之间的区别的使用技巧和注意事项,需要的朋友参考一下 索引是与实际表或视图相关联的查找表,数据库使用该查找表来改善数据检索性能的计时。在index中, 键存储在结构(B树)中,该结构使SQL Server可以快速有效地查找与键值关联的一行或多行。如果在表上定义了主键和唯一约束,则会

  • 本文向大家介绍详解MySQL 聚簇索引与非聚簇索引,包括了详解MySQL 聚簇索引与非聚簇索引的使用技巧和注意事项,需要的朋友参考一下 1、聚集索引 表数据按照索引的顺序来存储的,也就是说索引项的顺序与表中记录的物理顺序一致。对于聚集索引,叶子结点即存储了真实的数据行,不再有另外单独的数据页。 在一张表上最多只能创建一个聚集索引,因为真实数据的物理顺序只能有一种。 从物理文件也可以看出 InnoD

  • 问题内容: 当我查看特定查询的执行计划时,我发现我的成本的77%在聚簇索引查找中。 我使用聚集索引的事实是否意味着我不会因为输出的列而看到性能问题? 对我来说,创建一个非聚集版本并包含所有正在输出的列会更好吗? 更新:聚集索引使用组合键。不知道这是否有所作为。 问题答案: 使用非聚集索引上的包含列的原因是为了避免对聚集数据进行“书签查找”。问题是,如果SQL Server _理论上可以_使用特定的

  • 本文向大家介绍浅析SQL Server 聚焦索引对非聚集索引的影响,包括了浅析SQL Server 聚焦索引对非聚集索引的影响的使用技巧和注意事项,需要的朋友参考一下 前言 在学习SQL 2012基础教程过程中会时不时穿插其他内容来进行讲解,相信看过SQL Server 2012 T-SQL基础教程的童鞋知道前面写的所有内容并非都是摘抄书上内容,如若是这样那将没有任何意义,学习的过程必须同时也是一

  • 问题内容: 查看执行计划,我在输出列表中看到“列A”。该操作是对非聚集索引的索引扫描:“ IX_name” 当我看到此索引的定义时。在“索引键”列或“包含”列中都看不到“ A列”。 如何使用非聚集索引来输出索引中不存在的列。它不应该在表或其他带有“ A列”的索引上使用“表扫描”。 问题答案: 如果表本身是集群1,那么所有二级索引都包含集群键2的副本(该键确定集群表中行的物理顺序)。 原因:群集表中