当前位置: 首页 > 编程笔记 >

python+requests接口自动化框架的实现

花永昌
2023-03-14
本文向大家介绍python+requests接口自动化框架的实现,包括了python+requests接口自动化框架的实现的使用技巧和注意事项,需要的朋友参考一下

为什么要做接口自动化框架

1、业务与配置的分离

2、数据与程序的分离;数据的变更不影响程序

3、有日志功能,实现无人值守

4、自动发送测试报告

5、不懂编程的测试人员也可以进行测试

正常接口测试的流程是什么?

确定接口测试使用的工具----->配置需要的接口参数----->进行测试----->检查测试结果----->生成测试报告

测试的工具:python+requests

接口测试用例:excel

一、接口框架如下:

1、action包:用来存放关键字函数

2、config包:用来存放配置文件

3、TestData:用来存放测试数据,excel表

4、Log包:用来存放日志文件

5、utils包:用来存放公共的类

6、运行主程序interface_auto_test.py

7、Readme.txt:告诉团队组员使用改框架需要注意的地方

二、接口的数据规范设计---Case设计

一个sheet对应数据库里面一张表

APIsheet存放
编号;从1开始
接口的名称(APIName);
请求的url(RequestUrl);
请求的方法(RequestMethod);
传参的方式(paramsType):post/get请求方法不一样
用例说明(APITestCase)
是否执行(Active)部分接口已测通,下次不用测试,直接把这里设置成N,跳过此接口

post与get的区别

查看post详情

post请求参数一般是json串,参数放在from表单里面;参数一般不可见,相对来说安全性高些

查看get详情

get请求参数一般直接放在url里面

2.1注册接口用例

RequestData:请求的数据
(开发制定的传参方式)
RelyData:数据依赖
ResponseCode:响应code
ResponseData:响应数据
DataStore:存储的依赖数据;如果存在数据库里面,在表里增加一个字段用来存依赖的数据
(存储的方式是编写接口自动化的人员来设定的存储方式)
CheckPoint:检查点
Active:是否执行
Status:执行用例的状态,方便查看用例是否执行成功
ErrorInfo:case运行失败,失败的错误信息;eg:是也本身的原因还是case设置失败,还是其他原因

2.2登录接口用例

RequestData:请求的数据
(开发制定的传参方式)
RelyData:数据依赖
(存储的方式是编写接口自动化的人员来设定的存储方式)
ResponseCode:响应code
ResponseData:响应数据
DataStore:存储的依赖数据;如果存在数据库里面,在表里增加一个字段用来存依赖的数据
(存储的方式是编写接口自动化的人员来设定的存储方式)
CheckPoint:检查点
Active:是否执行
Status:执行用例的状态,方便查看用例是否执行成功
ErrorInfo:case运行失败,失败的错误信息;eg:是也本身的原因还是case设置失败,还是其他原因

重点说明下RelyData:数据依赖
采取的是字典:key:value来存储数据格式;
{"request":{"username":"register->1","password":"register->1"},"response":{"code":"register->1"}}

格式化之后:

{
  "request":{
    "username":"register->1",
    "password":"register->1"
  },
  "response":{
    "code":"register->1"
  }
}

三、创建utils包:用来存放公共的类

3.1 ParseExcel.py 操作封装excel的类(ParseExcel.py)

#encoding=utf-8
import openpyxl
from openpyxl.styles import Border, Side, Font
import time

class ParseExcel(object):

  def __init__(self):
    self.workbook = None
    self.excelFile = None
    self.font = Font(color = None) # 设置字体的颜色
    # 颜色对应的RGB值
    self.RGBDict = {'red': 'FFFF3030', 'green': 'FF008B00'}

  def loadWorkBook(self, excelPathAndName):
    # 将excel文件加载到内存,并获取其workbook对象
    try:
      self.workbook = openpyxl.load_workbook(excelPathAndName)
    except Exception as err:
      raise err
    self.excelFile = excelPathAndName
    return self.workbook

  def getSheetByName(self, sheetName):
    # 根据sheet名获取该sheet对象
    try:
      # sheet = self.workbook.get_sheet_by_name(sheetName)
      sheet = self.workbook[sheetName]
      return sheet
    except Exception as err:
      raise err

  def getSheetByIndex(self, sheetIndex):
    # 根据sheet的索引号获取该sheet对象
    try:
      # sheetname = self.workbook.get_sheet_names()[sheetIndex]
      sheetname = self.workbook.sheetnames[sheetIndex]
    except Exception as err:
      raise err
    # sheet = self.workbook.get_sheet_by_name(sheetname)
    sheet = self.workbook[sheetname]
    return sheet

  def getRowsNumber(self, sheet):
    # 获取sheet中有数据区域的结束行号
    return sheet.max_row

  def getColsNumber(self, sheet):
    # 获取sheet中有数据区域的结束列号
    return sheet.max_column

  def getStartRowNumber(self, sheet):
    # 获取sheet中有数据区域的开始的行号
    return sheet.min_row

  def getStartColNumber(self, sheet):
    # 获取sheet中有数据区域的开始的列号
    return sheet.min_column

  def getRow(self, sheet, rowNo):
    # 获取sheet中某一行,返回的是这一行所有的数据内容组成的tuple,
    # 下标从1开始,sheet.rows[1]表示第一行
    try:
      rows = []
      for row in sheet.iter_rows():
        rows.append(row)
      return rows[rowNo - 1]
    except Exception as err:
      raise err

  def getColumn(self, sheet, colNo):
    # 获取sheet中某一列,返回的是这一列所有的数据内容组成tuple,
    # 下标从1开始,sheet.columns[1]表示第一列
    try:
      cols = []
      for col in sheet.iter_cols():
        cols.append(col)
      return cols[colNo - 1]
    except Exception as err:
      raise err

  def getCellOfValue(self, sheet, coordinate = None,
            rowNo = None, colsNo = None):
    # 根据单元格所在的位置索引获取该单元格中的值,下标从1开始,
    # sheet.cell(row = 1, column = 1).value,
    # 表示excel中第一行第一列的值
    if coordinate != None:
      try:
        return sheet[coordinate]
      except Exception as err:
        raise err
    elif coordinate is None and rowNo is not None and \
            colsNo is not None:
      try:
        return sheet.cell(row = rowNo, column = colsNo).value
      except Exception as err:
        raise err
    else:
      raise Exception("Insufficient Coordinates of cell !")

  def getCellOfObject(self, sheet, coordinate = None,
            rowNo = None, colsNo = None):
    # 获取某个单元格的对象,可以根据单元格所在位置的数字索引,
    # 也可以直接根据excel中单元格的编码及坐标
    # 如getCellObject(sheet, coordinate = 'A1') or
    # getCellObject(sheet, rowNo = 1, colsNo = 2)
    if coordinate != None:
      try:
        # return sheet.cell(coordinate = coordinate)
        return sheet[coordinate]
      except Exception as err:
        raise err
    elif coordinate == None and rowNo is not None and \
            colsNo is not None:
      try:
        return sheet.cell(row = rowNo,column = colsNo)
      except Exception as err:
        raise err
    else:
      raise Exception("Insufficient Coordinates of cell !")

  def writeCell(self, sheet, content, coordinate = None,
    rowNo = None, colsNo = None, style = None):
    #根据单元格在excel中的编码坐标或者数字索引坐标向单元格中写入数据,
    # 下标从1开始,参style表示字体的颜色的名字,比如red,green
    if coordinate is not None:
      try:
        # sheet.cell(coordinate = coordinate).value = content
        sheet[coordinate] = content
        if style is not None:
          sheet[coordinate].\
            font = Font(color = self.RGBDict[style])
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    elif coordinate == None and rowNo is not None and \
            colsNo is not None:
      try:
        sheet.cell(row = rowNo,column = colsNo).value = content
        if style:
          sheet.cell(row = rowNo,column = colsNo).\
            font = Font(color = self.RGBDict[style])
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    else:
      raise Exception("Insufficient Coordinates of cell !")

  def writeCellCurrentTime(self, sheet, coordinate = None,
        rowNo = None, colsNo = None):
    # 写入当前的时间,下标从1开始
    now = int(time.time()) #显示为时间戳
    timeArray = time.localtime(now)
    currentTime = time.strftime("%Y-%m-%d %H:%M:%S", timeArray)
    if coordinate is not None:
      try:
        sheet.cell(coordinate = coordinate).value = currentTime
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    elif coordinate == None and rowNo is not None \
        and colsNo is not None:
      try:
        sheet.cell(row = rowNo, column = colsNo
            ).value = currentTime
        self.workbook.save(self.excelFile)
      except Exception as e:
        raise e
    else:
      raise Exception("Insufficient Coordinates of cell !")

if __name__ == '__main__':
  # 测试代码
  pe = ParseExcel()
  pe.loadWorkBook(r'D:\ProgramSourceCode\Python Source Code\WorkSpace\InterfaceFrame2018\inter_test_data.xlsx')
  sheetObj = pe.getSheetByName(u"API")
  print("通过名称获取sheet对象的名字:", sheetObj.title)
  # print help(sheetObj.rows)
  print("通过index序号获取sheet对象的名字:", pe.getSheetByIndex(0).title)
  sheet = pe.getSheetByIndex(0)
  print(type(sheet))
  print(pe.getRowsNumber(sheet)) #获取最大行号
  print(pe.getColsNumber(sheet)) #获取最大列号
  rows = pe.getRow(sheet, 1) #获取第一行
  for i in rows:
    print(i.value)
  # # 获取第一行第一列单元格内容
  # print pe.getCellOfValue(sheet, rowNo = 1, colsNo = 1)
  # pe.writeCell(sheet, u'我爱祖国', rowNo = 10, colsNo = 10)
  # pe.writeCellCurrentTime(sheet, rowNo = 10, colsNo = 11)

3.2 封装get/post请求(HttpClient.py)

import requests
import json

class HttpClient(object):
  def __init__(self):
    pass

  def request(self, requestMethod, requestUrl, paramsType,
        requestData, headers =None, **kwargs):
    if requestMethod == "post":
      print("---", requestData, type(requestData))
      if paramsType == "form":
        response = self.__post(url = requestUrl, data = json.dumps(eval(requestData)),
                 headers = headers, **kwargs)
        return response
      elif paramsType == "json":
        response = self.__post(url = requestUrl, json = json.dumps(eval(requestData)),
                 headers = headers, **kwargs)
        return response
    elif requestMethod == "get":
      request_url = requestUrl
      if paramsType == "url":
        request_url = "%s%s" %(requestUrl, requestData)
      response = self.__get(url = request_url, params = requestData, **kwargs)
      return response

  def __post(self, url, data = None, json = None, headers=None,**kwargs):
    print("----")
    response = requests.post(url=url, data = data, json=json, headers=headers)
    return response

  def __get(self, url, params = None, **kwargs):
    response = requests.get(url, params = params, **kwargs)
    return response

if __name__ == "__main__":
  hc = HttpClient()
  res = hc.request("get", "http://39.106.41.11:8080/getBlogContent/", "url",'2')
  print(res.json())

3.3 封装MD5(md5_encrypt)

import hashlib

def md5_encrypt(text):
  m5 = hashlib.md5()
  m5.update(text.encode("utf-8"))
  value = m5.hexdigest()
  return value

if __name__ == "__main__":
  print(md5_encrypt("sfwe"))

3.4 封装Log

import logging
import logging.config
from config.public_data import baseDir

# 读取日志配置文件
logging.config.fileConfig(baseDir + "\config\Logger.conf")
# 选择一个日志格式
logger = logging.getLogger("example02")#或者example01

def debug(message):
  # 定义dubug级别日志打印方法
  logger.debug(message)

def info(message):
  # 定义info级别日志打印方法
  logger.info(message)

def warning(message):
  # 定义warning级别日志打印方法
  logger.warning(message)

3.5 封装发送Email类

import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header
from ProjVar.var import *

import os
import smtplib
from email import encoders
from email.mime.base import MIMEBase
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.header import Header
from email.utils import formataddr

def send_mail():
  mail_host="smtp.126.com" #设置服务器
  mail_user="testman1980"  #用户名
  mail_pass="wulaoshi1980"  #口令
  sender = 'testman1980@126.com'
  receivers = ['2055739@qq.com',"testman1980@126.com"] # 接收邮件,可设置为你的QQ邮箱或者其他邮箱
  # 创建一个带附件的实例
  message = MIMEMultipart()
  message['From'] = formataddr(["光荣之路吴老师", "testman1980@126.com"])
  message['To'] = ','.join(receivers)
  subject = '自动化测试执行报告'
  message['Subject'] = Header(subject, 'utf-8')
  message["Accept-Language"]="zh-CN"
  message["Accept-Charset"]="ISO-8859-1,utf-8,gbk"
  # 邮件正文内容
  message.attach(MIMEText('最新执行的自动化测试报告,请参阅附件内容!', 'plain', 'utf-8'))

  # 构造附件1,传送测试结果的excel文件
  att = MIMEBase('application', 'octet-stream')
  att.set_payload(open(ProjDirPath+"\\testdata\\testdata.xlsx", 'rb').read())
  att.add_header('Content-Disposition', 'attachment', filename=('gbk', '', "自动化测试报告.xlsx"))
  encoders.encode_base64(att)
  message.attach(att)
  """
  # 构造附件2,传送当前目录下的 runoob.txt 文件
  att2 = MIMEText(open('e:\\a.py','rb').read(), 'base64', 'utf-8')
  att2["Content-Type"] = 'application/octet-stream'
  att2["Content-Disposition"] = 'attachment; filename="a.py"'
  message.attach(att2)
  """
  try:
    smtpObj = smtplib.SMTP(mail_host)
    smtpObj.login(mail_user, mail_pass)
    smtpObj.sendmail(sender, receivers, message.as_string())
    print("邮件发送成功")
  except smtplib.SMTPException as e:
    print("Error: 无法发送邮件", e)

if __name__ == "__main__":
  send_mail()

四、 创建config包 用来存放公共的参数、配置文件、长时间不变的变量值

创建public_data.py

import os
# 整个项目的根目录绝对路劲
baseDir = os.path.dirname(os.path.dirname(__file__))

# 获取测试数据文件的绝对路径
file_path = baseDir + "/TestData/inter_test_data.xlsx"

API_apiName = 2
API_requestUrl = 3
API_requestMothod = 4
API_paramsType = 5
API_apiTestCaseFileName = 6
API_active = 7

CASE_requestData = 1
CASE_relyData = 2
CASE_responseCode = 3
CASE_responseData = 4
CASE_dataStore = 5
CASE_checkPoint = 6
CASE_active = 7
CASE_status = 8
CASE_errorInfo = 9

# 存储请求参数里面依赖的数据
REQUEST_DATA = {}

# 存储响应对象中的依赖数据
RESPONSE_DATA = {}

if __name__=="__main__":
  print(file_path)
  print(baseDir)

五、创建TestData目录,用来存放测试文件

inter_test_data.xlsx

六、创建action包,用来存放关键字函数

6.1 解决数据依赖 (GetRely.py)

from config.public_data import REQUEST_DATA, RESPONSE_DATA
from utils.md5_encrypt import md5_encrypt

REQUEST_DATA = {"用户注册":{"1":{"username":"zhangsan", "password":"dfsdf23"},
            "headers":{"cookie":"asdfwerw"}}}
RESPONSE_DATA = {"用户注册":{"1":{"code":"00"}, "headers":{"age":2342}}}

class GetRely(object):
  def __init__(self):
    pass

  @classmethod
  def get(self, dataSource, relyData, headSource = {}):
    print(type(dataSource))
    print(dataSource)
    data = dataSource.copy()
    for key, value in relyData.items():
      if key == "request":
        #说明应该去REQUEST_DATA中获取
        for k, v in value.items():
          interfaceName, case_idx = v.split("->")
          val = REQUEST_DATA[interfaceName][case_idx][k]
          if k == "password":
            data[k] = md5_encrypt(val)
          else:
            data[k] = val
      elif key == "response":
        # 应该去RESPONSE_DATA中获取
        for k, v in value.items():
          interfaceName, case_idx = v.split("->")
          data[k] = RESPONSE_DATA[interfaceName][case_idx][k]
      elif key == "headers":
        if headSource:
          for key, value in value.items():
            if key == "request":
              for k, v in value.items():
                for i in v:
                  headSource[i] = REQUEST_DATA[k]["headers"][i]
            elif key == "response":
              for i, val in value.items():
                for j in val:
                  headSource[j] = RESPONSE_DATA[i]["headers"][j]
    return "%s" %data

if __name__ == "__main__":
  s = {"username": "", "password": "","code":""}
  h = {"cookie":"123", "age":332}
  rely = {"request": {"username": "用户注册->1", "password": "用户注册->1"},
      "response":{"code":"用户注册->1"},
      "headers":{"request":{"用户注册":["cookie"]},"response":{"用户注册":["age"]}}
      }
  print(GetRely.get(s, rely, h))

6.2 解决数据存储(RelyDataStore.py)

from config.public_data import RESPONSE_DATA, REQUEST_DATA

class RelyDataStore(object):
  def __init__(self):
    pass

  @classmethod
  def do(cls, storePoint, apiName, caseId, request_source = {}, response_source = {}, req_headers={}, res_headers = {}):
    for key, value in storePoint.items():
      if key == "request":
        # 说明需要存储的依赖数据来自请求参数,应该将数据存储到REQUEST_DATA
        for i in value:
          if i in request_source:
            val = request_source[i]
            if apiName not in REQUEST_DATA:
              # 说明存储数据的结构还未生成,需要指明数据存储结构
              REQUEST_DATA[apiName]={str(caseId): {i: val}}
            else:
              #说明存储数据结构中最外层结构已存在
              if str(caseId) in REQUEST_DATA[apiName]:
                REQUEST_DATA[apiName][str(caseId)][i] = val
              else:
                # 说明内层结构不完整,需要指明完整的结构
                REQUEST_DATA[apiName][str(caseId)] = {i: val}
          else:
            print("请求参数中不存在字段" + i)
      elif key == "response":
        #说明需要存储的依赖数据来自接口的响应body,应该将数据存储到RESPONSE_DATA
        for j in value:
          if j in response_source:
            val = response_source[j]
            if apiName not in RESPONSE_DATA:
              # 说明存储数据的结构还未生成,需要指明数据存储结构
              RESPONSE_DATA[apiName]={str(caseId): {j: val}}
            else:
              #说明存储数据结构中最外层结构已存在
              if str(caseId) in RESPONSE_DATA[apiName]:
                RESPONSE_DATA[apiName][str(caseId)][j] = val
              else:
                # 说明内层结构不完整,需要指明完整的结构
                RESPONSE_DATA[apiName][str(caseId)] = {j: val}
          else:
            print("接口的响应body中不存在字段" + j)
      elif key == "headers":
        for k, v in value.items():
          if k == "request":
            # 说明需要往REQUEST_DATA变量中写入存储数据
            for item in v:
              if item in req_headers:
                header = req_headers[item]
                if "headers" in REQUEST_DATA[apiName]:
                  REQUEST_DATA[apiName]["headers"][item] = header
                else:
                  REQUEST_DATA[apiName]["headers"] = {item: header}
          elif k == "response":
            # 说明需要往RESPONSE_DATA变量中写入存储数据
            for it in v:
              if it in res_headers:
                header = res_headers[it]
                if "headers" in RESPONSE_DATA[apiName]:
                  RESPONSE_DATA[apiName]["headers"][it] = header
                else:
                  RESPONSE_DATA[apiName]["headers"] = {item: header}
    print(REQUEST_DATA)
    print(RESPONSE_DATA)


if __name__ == "__main__":
  r = {"username": "srwcx01", "password": "wcx123wac1", "email": "wcx@qq.com"}
  req_h = {"cookie":"csdfw23"}
  res_h = {"age":597232}
  s = {"request": ["username", "password"], "response": ["userid"],"headers":{"request":["cookie"],
    "response":["age"]}}
  res = {"userid": 12, "code": "00"}
  RelyDataStore.do(s, "register", 1, r, res, req_headers=req_h, res_headers=res_h)
  print(REQUEST_DATA)
  print(RESPONSE_DATA)

6.3 校验数据结果(CheckResult.py)

import re

class CheckResult(object):
  def __init__(self):
    pass

  @classmethod
  def check(self, responseObj, checkPoint):
    responseBody = responseObj.json()
    # responseBody = {"code": "", "userid": 12, "id": "12"}
    errorKey = {}
    for key, value in checkPoint.items():
      if key in responseBody:
        if isinstance(value, (str, int)):
          # 等值校验
          if responseBody[key] != value:
            errorKey[key] = responseBody[key]
        elif isinstance(value, dict):
          sourceData = responseBody[key]
          if "value" in value:
            # 模糊匹配校验
            regStr = value["value"]
            rg = re.match(regStr, "%s" %sourceData)
            if not rg:
              errorKey[key] = sourceData
          elif "type" in value:
            # 数据类型校验
            typeS = value["type"]
            if typeS == "N":
              # 说明是整形校验
              if not isinstance(sourceData, int):
                errorKey[key] = sourceData
      else:
        errorKey[key] = "[%s] not exist" %key
    return errorKey

if __name__ == "__main__":
  r = {"code": "00", "userid": 12, "id": 12}
  c = {"code": "00", "userid": {"type": "N"}, "id": {"value": "\d+"}}
  print(CheckResult.check(r, c))

6.4 往excel里面写结果

from config.public_data import *

def write_result(wbObj, sheetObj, responseData, errorKey, rowNum):
  try:
    # 写响应body
    wbObj.writeCell(sheetObj, content="%s" %responseData,
            rowNo = rowNum, colsNo=CASE_responseData)
    # 写校验结果状态及错误信息
    if errorKey:
      wbObj.writeCell(sheetObj, content="%s" %errorKey,
            rowNo=rowNum, colsNo=CASE_errorInfo)
      wbObj.writeCell(sheetObj, content="faild",
              rowNo=rowNum, colsNo=CASE_status, style="red")
    else:
      wbObj.writeCell(sheetObj, content="pass",
              rowNo=rowNum, colsNo=CASE_status, style="green")
  except Exception as err:
    raise err

七、创建Log目录用来存放日志

八、主函数

#encoding=utf-8
import requests
import json
from action.get_rely import GetRely
from config.public_data import *
from utils.ParseExcel import ParseExcel
from utils.HttpClient import HttpClient
from action.data_store import RelyDataStore
from action.check_result import CheckResult
from action.write_result import write_result
from utils.Log import *

def main():
  parseE = ParseExcel()
  parseE.loadWorkBook(file_path)
  sheetObj = parseE.getSheetByName("API")
  activeList = parseE.getColumn(sheetObj, API_active)
  for idx, cell in enumerate(activeList[1:], 2):
    if cell.value == "y":
      #需要被执行
      RowObj = parseE.getRow(sheetObj, idx)
      apiName = RowObj[API_apiName -1].value
      requestUrl = RowObj[API_requestUrl - 1].value
      requestMethod = RowObj[API_requestMothod - 1].value
      paramsType = RowObj[API_paramsType - 1].value
      apiTestCaseFileName = RowObj[API_apiTestCaseFileName - 1].value

      # 下一步读取用例sheet表,准备执行测试用例
      caseSheetObj = parseE.getSheetByName(apiTestCaseFileName)
      caseActiveObj = parseE.getColumn(caseSheetObj, CASE_active)
      for c_idx, col in enumerate(caseActiveObj[1:], 2):
        if col.value == "y":
          #需要执行的用例
          caseRowObj = parseE.getRow(caseSheetObj, c_idx)
          requestData = caseRowObj[CASE_requestData - 1].value
          relyData = caseRowObj[CASE_relyData - 1].value
          responseCode = caseRowObj[CASE_responseCode - 1].value
          responseData = caseRowObj[CASE_responseData - 1].value
          dataStore = caseRowObj[CASE_dataStore -1].value
          checkPoint = caseRowObj[CASE_checkPoint - 1].value

          #发送接口请求之前需要做一下数据依赖的处理
          if relyData:
            logging.info("处理第%s个接口的第%s条用例的数据依赖!")
            requestData = GetRely.get(eval(requestData), eval(relyData))
          httpC = HttpClient()
          response = httpC.request(requestMethod=requestMethod,
                       requestData=requestData,
                       requestUrl=requestUrl,
                       paramsType=paramsType
                       )
          # 获取到响应结果后,接下来进行数据依赖存储逻辑实现
          if response.status_code == 200:
            responseData = response.json()
            # 进行依赖数据存储
            if dataStore:
              RelyDataStore.do(eval(dataStore), apiName, c_idx - 1, eval(requestData), responseData)
            # 接下来就是校验结果
            else:
              logging.info("接口【%s】的第【%s】条用例,不需要进行依赖数据存储!" %(apiName, c_idx))
            if checkPoint:
              errorKey = CheckResult.check(response, eval(checkPoint))
              write_result(parseE, caseSheetObj, responseData, errorKey, c_idx)
          else:
            logging.info("接口【%s】的第【%s】条用例,执行失败,接口协议code非200!" %(apiName, c_idx))
        else:
          logging.info("第%s个接口的第%s条用例,被忽略执行!" %(idx -1, c_idx-1))
    else:
      logging.info("第%s行的接口被忽略执行!" %(idx -1))


if __name__=="__main__":
  main()

框架待完善~~请各路神仙多多指教~~

到此这篇关于python+requests接口自动化框架的实现的文章就介绍到这了,更多相关python requests接口自动化内容请搜索小牛知识库以前的文章或继续浏览下面的相关文章希望大家以后多多支持小牛知识库!

 类似资料:
  • 本文向大家介绍python接口自动化框架实战,包括了python接口自动化框架实战的使用技巧和注意事项,需要的朋友参考一下      python接口测试的原理,就不解释了,百度一大堆。     先看目录,可能这个框架比较简单,但是麻雀虽小五脏俱全。 各个文件夹下的文件如下: 一.理清思路     我这个自动化框架要实现什么     1.从excel里面提取测试用例     2.测试报告的输出,并

  • 本文向大家介绍python+unittest+requests实现接口自动化的方法,包括了python+unittest+requests实现接口自动化的方法的使用技巧和注意事项,需要的朋友参考一下 前言: Requests简介 Requests 是使用Apache2 Licensed 许可证的 HTTP 库。用 Python 编写,真正的为人类着想。 Python 标准库中的 urllib2 模

  • 本文向大家介绍Python接口自动化测试的实现,包括了Python接口自动化测试的实现的使用技巧和注意事项,需要的朋友参考一下 1)环境准备:   接口测试的方式有很多,比如可以用工具(jmeter,postman)之类,也可以自己写代码进行接口测试,工具的使用相对来说都比较简单,重点是要搞清楚项目接口的协议是什么,然后有针对性的进行选择,甚至当工具不太适合项目时需要自己进行开发。   在我们项目

  • 本文向大家介绍Python API自动化框架总结,包括了Python API自动化框架总结的使用技巧和注意事项,需要的朋友参考一下 学完了Python脚本接口自动化之后,一直没有对该框架做总结,今天终于试着来做一份总结了。 框架结构如下图: 来说一下每个目录的作用: Configs:该目录下存放的是.conf,.ini文件格式的配置文件;文件里面的内容可以通过封装好的读写配置文件的类去获取。 da

  • 本文向大家介绍python实现文件分片上传的接口自动化,包括了python实现文件分片上传的接口自动化的使用技巧和注意事项,需要的朋友参考一下 背景和目的: 利用python request 编写脚本测试公司系统的文件上传接口。前端读取文件的大小然后文件分片传给后端,后端将每一片数据重新组合成文件。大概的过程是:前端将整个文件的md5、size(大小)、name(文件名)、ext(文件后缀)、to

  • 本文向大家介绍说明模块化自动化框架。,包括了说明模块化自动化框架。的使用技巧和注意事项,需要的朋友参考一下 在模块化自动化框架中,通过将整个应用程序划分为几个小的自给自足的模块,在模块或集群的基础上开发测试脚本。因此,创建了属于特定模块或集群的各个测试脚本。 属于这些隔离模块的这些脚本可以集成,并且可以由主驱动程序脚本驱动,以在模块之间执行集成测试。所有这些都是在开发模块脚本时使用的通用功能库(包