本文实例讲述了Python3.5基础之NumPy模块的使用。分享给大家供大家参考,具体如下:
1、简介
2、多维数组——ndarray
360615-2bfe-4507-ad86-b905bfd60b0f.png" />
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author:ZhengzhengLiu import numpy as np #1.创建ndarray #创建一维数组 n1 = np.array([1,2,3,4]) print(n1) #属性--ndim:维度;dtype:元素类型;shape:数组形状; # size:数组元素总个数,shape值相乘得到 print("n1维度:",n1.ndim) print("n1元素类型:",n1.dtype) print("n1数组形状:",n1.shape) print("n1数组元素总个数:",n1.size) #创建二维数组 n2 = np.array([ [1,2,3,4], [5,6,7,8] ]) print(n2) print("n2维度:",n2.ndim) print("n2元素类型:",n2.dtype) #创建三维数组 n3 = np.array([ [ [1,2,3,4], [5,6,7,8] ], [ [10,20,30,40], [50,60,70,80] ] ]) print(n3) print("n3数组形状:",n3.shape) print("n3数组元素总个数:",n3.size) #2.通过函数创建数组 z = np.zeros((3,2)) #创建指定形状的数组,数值由零填充 print(z) print(z.dtype) o = np.ones((2,4)) #创建指定形状的数组,数值由1填充 print(o) e = np.empty((2,3,2)) #创建指定形状的数组,数值由未初始化的垃圾值填充 print(e) #3.通过函数计算的方式去创建数组 #一个参数,区间左闭右开,默认起始值为0,步长为1 np1 = np.arange(10) print(np1) #两个参数(起始值,终止值),区间左闭右开,默认步长为1 np2 = np.arange(2,10) print(np2) #三个参数(起始值,终止值,步长),区间左闭右开,步长为2 np3 = np.arange(2,10,2) print(np3) #倒序创建数组元素 np4 = np.arange(10,2,-1) print(np4) #全闭区间,参数(起始值,终止值,元素个数),等差数列 np5 = np.linspace(0,10,5) print(np5) #全闭区间,以10为底数参数为指数(起始值,终止值,元素个数),等比数列 np6 = np.logspace(0,2,5) print(np6) #生成随机数的数组 np7 = np.random.random((2,3)) print(np7)
运行结果:
[1 2 3 4]
n1维度: 1
n1元素类型: int32
n1数组形状: (4,)
n1数组元素总个数: 4
[[1 2 3 4]
[5 6 7 8]]
n2维度: 2
n2元素类型: int32
[[[ 1 2 3 4]
[ 5 6 7 8]][[10 20 30 40]
[50 60 70 80]]]
n3数组形状: (2, 2, 4)
n3数组元素总个数: 16
[[ 0. 0.]
[ 0. 0.]
[ 0. 0.]]
float64
[[ 1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
[[[ 1.02548961e-305 5.40165714e-067]
[ 1.05952696e-153 9.69380992e+141]
[ 2.17151199e+214 4.34975848e-114]][[ 2.08064175e-115 1.91431714e+227]
[ 6.42897811e-109 1.26088822e+232]
[ 9.51634286e-114 5.45764552e-306]]]
[0 1 2 3 4 5 6 7 8 9]
[2 3 4 5 6 7 8 9]
[2 4 6 8]
[10 9 8 7 6 5 4 3]
[ 0. 2.5 5. 7.5 10. ]
[ 1. 3.16227766 10. 31.6227766 100. ]
[[ 0.55980469 0.99477652 0.82310732]
[ 0.97239333 0.1409895 0.57213264]]
#修改ndarray形状 np8 = np.arange(0,20,2) print(np8) print(np8.size) np9 = np8.reshape(2,5) print(np9) print(np9.size) #reshape函数是对被修改数组的一个拷贝,共享同一内存, # 修改其中一个数组会影响里一个 np9[1][2] = 50 print(np8) print(np9) # -1表示第二维自动根据元素个数计算 np10 = np8.reshape(5,-1) print(np10) #shape直接修改原来数组的形状 np8.shape=(2,-1) print(np8)
运行结果:
[ 0 2 4 6 8 10 12 14 16 18]
10
[[ 0 2 4 6 8]
[10 12 14 16 18]]
10
[ 0 2 4 6 8 10 12 50 16 18]
[[ 0 2 4 6 8]
[10 12 50 16 18]]
[[ 0 2]
[ 4 6]
[ 8 10]
[12 50]
[16 18]]
[[ 0 2 4 6 8]
[10 12 50 16 18]]
Numpy基本操作说明
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
本文向大家介绍Python3.5基础之函数的定义与使用实例详解【参数、作用域、递归、重载等】,包括了Python3.5基础之函数的定义与使用实例详解【参数、作用域、递归、重载等】的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python3.5函数的定义与使用。分享给大家供大家参考,具体如下: 1、函数学习框架 2、函数的定义与格式 (1)定义 (2)函数调用 注:函数名称不能以数字开头,
本文向大家介绍Java基础之Filter的实例详解,包括了Java基础之Filter的实例详解的使用技巧和注意事项,需要的朋友参考一下 Java基础之Filter的实例详解 定义: Filter,是Servlet的一种,接口类为javax.servlet.Filter,以一种模块化或者可重用的方法封装公共行为,本质是可复用的代码片段。 职责:在请求到达
本文向大家介绍Python基础之函数用法实例详解,包括了Python基础之函数用法实例详解的使用技巧和注意事项,需要的朋友参考一下 本文以实例形式较为详细的讲述了Python函数的用法,对于初学Python的朋友有不错的借鉴价值。分享给大家供大家参考之用。具体分析如下: 通常来说,Python的函数是由一个新的语句编写,即def,def是可执行的语句--函数并不存在,直到Python运行了def后
本文向大家介绍nodejs基础之多进程实例详解,包括了nodejs基础之多进程实例详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了nodejs基础之多进程。分享给大家供大家参考,具体如下: Node.js 多进程 我们都知道 Node.js 是以单线程的模式运行的,但它使用的是事件驱动来处理并发,这样有助于我们在多核 cpu 的系统上创建多个子进程,从而提高性能。 每个子进程总是带有三
本文向大家介绍Python基础学习之类与实例基本用法与注意事项详解,包括了Python基础学习之类与实例基本用法与注意事项详解的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了Python基础学习之类与实例基本用法与注意事项。分享给大家供大家参考,具体如下: 前言 和其他编程语言相比,Python用非常少的新语法和语义将类加入到语言中。Python的类提供了面向对象编程的所有标准特性:类继承
本文向大家介绍Java基础之extends用法详解及简单实例,包括了Java基础之extends用法详解及简单实例的使用技巧和注意事项,需要的朋友参考一下 Java extends用法详解 概要: 理解继承是理解面向对象程序设计的关键。在Java中,通过关键字extends继承一个已有的类,被继承的类称为父类(超类,基类),新的类称为子类(派生类)。在Java中不允许多继承。 (1)继承 在e