当前位置: 首页 > 编程笔记 >

Android延迟实现的几种解决方法及原理分析

朱明知
2023-03-14
本文向大家介绍Android延迟实现的几种解决方法及原理分析,包括了Android延迟实现的几种解决方法及原理分析的使用技巧和注意事项,需要的朋友参考一下

前言

在Android开发中我们可能会有延时执行某个操作的需求,例如我们启动应用的时候,一开始呈现的是一个引导页面,过了两三秒后,会自动跳转到主界面。这就是一个延时操作。

而写这篇文章的目的,是看到群里有人在实现延迟的时候,用如下的第四种方法,个人感觉有点不妥,为了防止更多的人有这种想法,所以自己抽空深入分析,就分析的结果,写下此文,希望对部分人有启示作用。

1.实现延迟的几种方法?

答:

1.java.util.Timer类的:

public void schedule(TimerTask task, long delay) {
 if (delay < 0)
  throw new IllegalArgumentException("Negative delay.");
 sched(task, System.currentTimeMillis()+delay, 0);
 }

2.android.os.Handler类:

public final boolean postDelayed(Runnable r, long delayMillis)
 {
 return sendMessageDelayed(getPostMessage(r), delayMillis);
 }

3.android.app.AlarmManager类:

 @SystemApi
 @RequiresPermission(android.Manifest.permission.UPDATE_DEVICE_STATS)
 public void set(@AlarmType int type, long triggerAtMillis, long windowMillis,
  long intervalMillis, OnAlarmListener listener, Handler targetHandler,
  WorkSource workSource) {
 setImpl(type, triggerAtMillis, windowMillis, intervalMillis, 0, null, listener, null,
  targetHandler, workSource, null);
 }

4.Thread.sleep()然后在一定时间之后再执行想执行的代码:

new Thread(new Runnable(){
 Thead.sleep(4*1000);
 doTask();
}).start()

2.他们的各自的实现原理?

答:

1.Timer的实现,是通过内部开启一个TimerThread:

private void mainLoop() {
 while (true) {
  try {
  TimerTask task;
  boolean taskFired;
  synchronized(queue) {
   // Wait for queue to become non-empty
   while (queue.isEmpty() && newTasksMayBeScheduled)
   queue.wait();
   if (queue.isEmpty())
   break; // Queue is empty and will forever remain; die

   // Queue nonempty; look at first evt and do the right thing
   long currentTime, executionTime;
   task = queue.getMin();
   synchronized(task.lock) {
   if (task.state == TimerTask.CANCELLED) {
    queue.removeMin();
    continue; // No action required, poll queue again
   }
   currentTime = System.currentTimeMillis();
   executionTime = task.nextExecutionTime;
   if (taskFired = (executionTime<=currentTime)) {
    if (task.period == 0) { // Non-repeating, remove
    queue.removeMin();
    task.state = TimerTask.EXECUTED;
    } else { // Repeating task, reschedule
    queue.rescheduleMin(
     task.period<0 ? currentTime - task.period
      : executionTime + task.period);
    }
   }
   }
   if (!taskFired) // Task hasn't yet fired; wait
   queue.wait(executionTime - currentTime);
  }
  if (taskFired) // Task fired; run it, holding no locks
   task.run();
  } catch(InterruptedException e) {
  }
 }
 }

是通过wait和延迟时间到达的时候,调用notify来唤起线程继续执行,这样来实现延迟的话,我们可以回开启一个新的线程,貌似为了个延迟没必要这样吧,定时,频繁执行的任务,再考虑这个吧。

2.Handler的postDelay是通过设置Message的when为delay的时间,我们知道当我们的应用开启的时候,会同步开启Looper.loop()方法循环的,不停的通过MeassgeQueue的next方法:

Message next() {
  ......
  int nextPollTimeoutMillis = 0;
  for (;;) {
   if (nextPollTimeoutMillis != 0) {
    Binder.flushPendingCommands();
   }
   nativePollOnce(ptr, nextPollTimeoutMillis);
   synchronized (this) {
    // Try to retrieve the next message. Return if found.
    final long now = SystemClock.uptimeMillis();
    Message prevMsg = null;
    Message msg = mMessages;
    if (msg != null && msg.target == null) {
     // Stalled by a barrier. Find the next asynchronous message in the queue.
     do {
      prevMsg = msg;
      msg = msg.next;
     } while (msg != null && !msg.isAsynchronous());
    }
    if (msg != null) {
     if (now < msg.when) {
      // Next message is not ready. Set a timeout to wake up when it is ready.
      nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
     } else {
      // Got a message.
      mBlocked = false;
      if (prevMsg != null) {
       prevMsg.next = msg.next;
      } else {
       mMessages = msg.next;
      }
      msg.next = null;
      if (DEBUG) Log.v(TAG, "Returning message: " + msg);
      msg.markInUse();
      return msg;
     }
    } else {
     // No more messages.
     nextPollTimeoutMillis = -1;
    }
  ......
  }
 }

当我们向MessageQueue插入一条延迟的Message的时候,Looper在执行loop方法,底层会调用epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);其中的timeoutMillis参数指定了在没有事件发生的时候epoll_wait调用阻塞的毫秒数(milliseconds)。这样我们在之前的时间内这个时候阻塞了是会释放cpu的资源,等到延迟的时间到了时候,再监控到事件发生。在这里可能有人会有疑问,一直阻塞,那我接下来的消息应该怎么执行呢?

我们可以看到当我们插入消息的时候的方法:

boolean enqueueMessage(Message msg, long when) {
  if (msg.target == null) {
   throw new IllegalArgumentException("Message must have a target.");
  }
  if (msg.isInUse()) {
   throw new IllegalStateException(msg + " This message is already in use.");
  }
  synchronized (this) {
   if (mQuitting) {
    IllegalStateException e = new IllegalStateException(
      msg.target + " sending message to a Handler on a dead thread");
    Log.w(TAG, e.getMessage(), e);
    msg.recycle();
    return false;
   }
   msg.markInUse();
   msg.when = when;
   Message p = mMessages;
   boolean needWake;
   if (p == null || when == 0 || when < p.when) {
    msg.next = p;
    mMessages = msg;
    needWake = mBlocked;
   } else {
    needWake = mBlocked && p.target == null && msg.isAsynchronous();
    Message prev;
    for (;;) {
     prev = p;
     p = p.next;
     if (p == null || when < p.when) {
      break;
     }
     if (needWake && p.isAsynchronous()) {
      needWake = false;
     }
    }
    msg.next = p; // invariant: p == prev.next
    prev.next = msg;
   }
   mQuitting is false.
   if (needWake) {
    nativeWake(mPtr);
   }
  }
  return true;
 }

阻塞了有两种方式唤醒,一种是超时了,一种是被主动唤醒了,在上面我们可以看到当有消息进入的时候,我们会唤醒继续执行,所以我们的即时消息在延迟消息之后插入是没有关系的。然后在延迟时间到了的时候,我们也会被唤醒,执行对应的消息send,以达到延迟时间执行某个任务的目的。

优势:这种延迟在阻塞的时候,是会释放cpu的锁,不会过多地占用cpu的资源。

3.AlarmManager的延迟的实现原理,是通过一个AlarmManager的set方法:

IAlarmManager mService.set(mPackageName, type, triggerAtMillis, windowMillis, intervalMillis, flags,
     operation, recipientWrapper, listenerTag, workSource, alarmClock);

这里是通过aidl与AlarmManagerService的所在进程进行通信,具体的实现是在AlarmManagerService类里面:

 private final IBinder mService = new IAlarmManager.Stub() {
  @Override
  public void set(String callingPackage,
    int type, long triggerAtTime, long windowLength, long interval, int flags,
    PendingIntent operation, IAlarmListener directReceiver, String listenerTag,
    WorkSource workSource, AlarmManager.AlarmClockInfo alarmClock) {
   final int callingUid = Binder.getCallingUid();
   if (interval != 0) {
    if (directReceiver != null) {
     throw new IllegalArgumentException("Repeating alarms cannot use AlarmReceivers");
    }
   }
   if (workSource != null) {
    getContext().enforcePermission(
      android.Manifest.permission.UPDATE_DEVICE_STATS,
      Binder.getCallingPid(), callingUid, "AlarmManager.set");
   }
   // No incoming callers can request either WAKE_FROM_IDLE or
   // ALLOW_WHILE_IDLE_UNRESTRICTED -- we will apply those later as appropriate.
   flags &= ~(AlarmManager.FLAG_WAKE_FROM_IDLE
     | AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED);
   // Only the system can use FLAG_IDLE_UNTIL -- this is used to tell the alarm
   // manager when to come out of idle mode, which is only for DeviceIdleController.
   if (callingUid != Process.SYSTEM_UID) {
    flags &= ~AlarmManager.FLAG_IDLE_UNTIL;
   }

   if (windowLength == AlarmManager.WINDOW_EXACT) {
    flags |= AlarmManager.FLAG_STANDALONE;
   }
   if (alarmClock != null) {
    flags |= AlarmManager.FLAG_WAKE_FROM_IDLE | AlarmManager.FLAG_STANDALONE;
   } else if (workSource == null && (callingUid < Process.FIRST_APPLICATION_UID
     || Arrays.binarySearch(mDeviceIdleUserWhitelist,
       UserHandle.getAppId(callingUid)) >= 0)) {
    flags |= AlarmManager.FLAG_ALLOW_WHILE_IDLE_UNRESTRICTED;
    flags &= ~AlarmManager.FLAG_ALLOW_WHILE_IDLE;
   }
   setImpl(type, triggerAtTime, windowLength, interval, operation, directReceiver,
     listenerTag, flags, workSource, alarmClock, callingUid, callingPackage);
  }
 }
}

虽然有人觉得用AlarmManager能够在应用关闭的情况下,定时器还能再唤起,经过自己的测试,当杀掉应用程序的进程,AlarmManager的receiver也是接收不到消息的,但是我相信在这里定时器肯定是发送了,但是作为接收方的应用程序进程被杀掉了,执行不了对应的代码。不过有人也觉得AlarmManager更耗电,是因为我们执行定时任务的情况会频繁唤起cpu,但是如果只是用来只是执行延迟任务的话,个人觉得和Handler.postDelayed()相比应该也不会耗电多的。

2.在上面的第四种方法,达到的延迟会一直通过Thread.sleep来达到延迟的话,会一直占用cpu的资源,这种方法不赞同使用。

3.总结

如上面我们看到的这样,如果是单纯的实现一个任务的延迟的话,我们可以用Handler.postDelayed()和AlarmManager.set()来实现,用(4)的方法Thread.sleep()的话,首先开启一个新的线程,然后会持有cpu的资源,用(1)的方法,Timer,会开启一个死循环的线程,这样在资源上面都有点浪费。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对小牛知识库的支持。

 类似资料:
  • 本文向大家介绍Android实现延迟的几种方法小结,包括了Android实现延迟的几种方法小结的使用技巧和注意事项,需要的朋友参考一下 本文实例总结了Android实现延迟的几种方法。分享给大家供大家参考,具体如下: 一、通过Thread 通过ProgressDialog的使用来举例说明如下 二、通过Timer 三、 四、利用AlarmManager 更多关于Android相关内容感兴趣的读者可查

  • 本文向大家介绍MySQL主从复制延迟原因以及解决方案,包括了MySQL主从复制延迟原因以及解决方案的使用技巧和注意事项,需要的朋友参考一下 来源:公众号「神谕的暗影长廊」 在异步或半同步的复制结构中,从库出现延迟是一件十分正常的事。 虽出现延迟正常,但是否需要关注,则一般是由业务来评估。 如:从库上有需要较高一致性的读业务,并且要求延迟小于某个值,那么则需要关注。 简单概述一下复制逻辑: 1、主库

  • 本文向大家介绍python 实现ping测试延迟的两种方法,包括了python 实现ping测试延迟的两种方法的使用技巧和注意事项,需要的朋友参考一下 一.python实现ping返回延迟繁琐版 二 .python实现ping返回延迟简单版本 以上就是python 实现ping测试延迟的两种方法的详细内容,更多关于python ping测试延迟的资料请关注呐喊教程其它相关文章!

  • 本文向大家介绍Android 解决监听home键的几种方法,包括了Android 解决监听home键的几种方法的使用技巧和注意事项,需要的朋友参考一下 Android 解决监听home键的几种方法 前言: 以下两种方法可以完美解决监听back键,home键,多任务键(最近任务键)。 一、使用注册广播监听home键、多任务键 演示图 创建一个广播代码如下: 在Activity中的onCreate()

  • 本文向大家介绍MySQL 出现错误1418 的原因分析及解决方法,包括了MySQL 出现错误1418 的原因分析及解决方法的使用技巧和注意事项,需要的朋友参考一下 MySQL 出现错误1418 的原因分析及解决方法 具体错误:  使用mysql创建、调用存储过程,函数以及触发器的时候会有错误符号为1418错误。 ERROR 1418 (HY000): This function has none

  • 本文向大家介绍Android 三种实现定时器详解及实现方法,包括了Android 三种实现定时器详解及实现方法的使用技巧和注意事项,需要的朋友参考一下 方法一:Handler+Thread 方法二:Handler类自带的postDelyed 方法三:Handler+Timer+TimerTask 以上就是对Android 定时器的资料整理后续继续补充相关知识,谢谢大家对本站的支持!