当前位置: 首页 > 编程笔记 >

C#构建树形结构数据(全部构建,查找构建)

贺季
2023-03-14
本文向大家介绍C#构建树形结构数据(全部构建,查找构建),包括了C#构建树形结构数据(全部构建,查找构建)的使用技巧和注意事项,需要的朋友参考一下

摘要:

最近在做任务管理,任务可以无限派生子任务且没有数量限制,前端采用Easyui的Treegrid树形展示控件。

一、遇到的问题

获取全部任务拼接树形速度过慢(数据量大约在900条左右)且查询速度也并不快;

二、解决方法

1、Tree转化的JSON数据格式

a.JSON数据格式:

[
  {
    "children":[
      {
        "children":[

        ],
        "username":"username2",
        "password":"password2",
        "id":"2",
        "pId":"1",
        "name":"节点2"
      },
      {
        "children":[

        ],
        "username":"username2",
        "password":"password2",
        "id":"A2",
        "pId":"1",
        "name":"节点2"
      }
    ],
    "username":"username1",
    "password":"password1",
    "id":"1",
    "pId":"0",
    "name":"节点1"
  },
  {
    "children":[

    ],
    "username":"username1",
    "password":"password1",
    "id":"A1",
    "pId":"0",
    "name":"节点1"
  }
]

b.定义实体必要字段

为了Tree结构的通用性,我们可以定义一个抽象的公用实体TreeObject以保证后续涉及到的List<T>转化树形JSON

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MyTree.Abs
{
  public abstract class TreeObejct
  {
    public string id { set; get; }
    public string pId { set; get; }
    public string name { set; get; }
    public IList<TreeObejct> children = new List<TreeObejct>();
    public virtual void Addchildren(TreeObejct node)
    {
      this.children.Add(node);
    }
  }
}

c.实际所需实体TreeModel让它继承TreeObject,这样对于id,pId,name,children我们就可以适用于其它实体了,这也相当于我们代码的特殊约定:

using MyTree.Abs;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace MyTree.Models
{
  public class TreeModel : TreeObejct
  {
    public string username { set; get; }
    public string password { set; get; }
  }
}

2、递归遍历

获取全部任务并转化为树形

获取全部任务转化为树形是比较简单的,我们首先获取到pId=0的顶级数据(即不存在父级的任务),我们通过顶级任务依次递归遍历它们的子节点。

b.我们暂时id以1开始则pId=0的都为顶级任务

我们首先写一段生成数据的方法:

    public static IList<TreeObejct> GetData(int number = 11)
    {
      IList<TreeObejct> datas = new List<TreeObejct>();
      for (int i = 1; i < number; i++)
      {
        datas.Add(new TreeModel
        {
          id = i.ToString(),
          pId = (i - 1).ToString(),
          name = "节点" + i,
          username = "username" + i,
          password = "password" + i
        });
        datas.Add(new TreeModel
        {
          id = "A" + i.ToString(),
          pId = (i - 1).ToString(),
          name = "节点" + i,
          username = "username" + i,
          password = "password" + i
        });
      }
      return datas;
    }

其次我们定义一些变量:

    private static IList<TreeObejct> models;
    private static IList<TreeObejct> models2;
    private static Thread t1;
    private static Thread t2;
    static void Main(string[] args)
    {
      int count = 21;
      Console.WriteLine("生成任务数:"+count+"个");
     
      Console.Read();
    }

我们再写一个递归获取子节点的递归方法:

    public static IList<TreeObejct> GetChildrens(TreeObejct node)
    {
      IList<TreeObejct> childrens = models.Where(c => c.pId == node.id.ToString()).ToList();
      foreach (var item in childrens)
      {
        item.children = GetChildrens(item);
      }
      return childrens;

    }

编写调用递归方法Recursion:

    public static void Recursion()
    {
      #region 递归遍历
      System.Diagnostics.Stopwatch sw = new System.Diagnostics.Stopwatch();

      sw.Start();

      var mds_0 = models.Where(c => c.pId == "0");//获取顶级任务
      foreach (var item in mds_0)
      {
        item.children = GetChildrens(item);
      }
      sw.Stop();
      Console.WriteLine("----------递归遍历用时:" + sw.ElapsedMilliseconds + "----------线程名称:"+t1.Name+",线程ID:"+t1.ManagedThreadId);

      #endregion
    }

编写main函数启动测试:

    private static IList<TreeObejct> models;
    private static IList<TreeObejct> models2;
    private static Thread t1;
    private static Thread t2;
    static void Main(string[] args)
    {
      int count = 1001;
      Console.WriteLine("生成任务数:"+count+"个");
      models = GetData(count);
     
      t1 = new Thread(Recursion);
     
      t1.Name = "递归遍历";
      t1.Start();
    

      Console.Read();
    }

输出结果:

递归遍历至此结束。

3、非递归遍历

非递归遍历在操作中不需要递归方法的参与即可实现Tree的拼接

对于以上的代码,我们不需要修改,只需要定义一个非递归遍历方法NotRecursion:

    public static void NotRecursion()
    {
      #region 非递归遍历

      System.Diagnostics.Stopwatch sw2 = new System.Diagnostics.Stopwatch();

      sw2.Start();
      Dictionary<string, TreeObejct> dtoMap = new Dictionary<string, TreeObejct>();
      foreach (var item in models)
      {
        dtoMap.Add(item.id, item);
      }
      IList<TreeObejct> result = new List<TreeObejct>();
      foreach (var item in dtoMap.Values)
      {
        if (item.pId == "0")
        {
          result.Add(item);
        }
        else
        {
          if (dtoMap.ContainsKey(item.pId))
          {
            dtoMap[item.pId].AddChilrden(item);
          }
        }


      }

      sw2.Stop();
      Console.WriteLine("----------非递归遍历用时:" + sw2.ElapsedMilliseconds + "----------线程名称:" + t2.Name + ",线程ID:" + t2.ManagedThreadId);

      #endregion
    }

编写main函数:

    private static IList<TreeObejct> models;
    private static IList<TreeObejct> models2;
    private static Thread t1;
    private static Thread t2;
    static void Main(string[] args)
    {
      int count = 6;
      Console.WriteLine("生成任务数:"+count+"个");
      models = GetData(count);
      models2 = GetData(count);
      t1 = new Thread(Recursion);
      t2 = new Thread(NotRecursion);
      t1.Name = "递归遍历";
      t2.Name = "非递归遍历";
      t1.Start();
      t2.Start();

      Console.Read();
    }

启动查看执行结果:

发现一个问题,递归3s,非递归0s,随后我又进行了更多的测试

执行时间测试

任务个数           递归(ms)               非递归(ms)
6 3 0
6 1 0
6 1 0
101 1 0
101 4 0
101 5 0
1001 196 5
1001 413 1
1001 233 7
5001 4667 5
5001 4645 28
5001 5055 7
10001 StackOverflowException 66
10001 StackOverflowException 81
10001 StackOverflowException 69
50001 - 46
50001 - 47
50001 - 42
100001 - 160
100001 - 133
100001 - 129

StackOverflowException:因包含的嵌套方法调用过多而导致执行堆栈溢出时引发的异常。 此类不能被继承。

StackOverflowException 执行堆栈溢出发生错误时引发,通常发生非常深度或无限递归。

-:没有等到结果。

当然这个测试并不专业,但是也展示出了它的效率的确满足了当前的需求。

4、查找构建树形结果

原理同上述非递归相同,不同之处是我们通过查找的数据去构建树形

    

我们通过查找获取到圈中的任务,再通过当前节点获取到父级节点,因为当时没考虑到任务层级的关系,因此为添加层级编号,为此可能会有重复的存在,因此我们使用HashSet<T>来剔除我们的重复数据,最终获取到有用数据再通过非递归遍历方法,我们便可以再次构建出树形(tree),来转化为JSON数据。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 我现在正在实现模拟N体问题的Barnes-Hut算法。我只想问关于建筑树的部分。 我做了两个函数来为它构建树。 我递归地构建树,并在构建时打印每个节点的数据,一切看起来都是正确的,但当程序返回到主函数时,只有树的根和根的子节点存储值。其他节点的值没有被存储,这很奇怪,因为我在递归过程中打印了它们,它们应该被存储。 这是经过修改的代码的一部分,我认为问题可能在哪里: 下面是函数set_root_an

  • 主要内容:树的结点,子树和空树,结点的度和层次,有序树和无序树,森林,树的表示方法,总结之前介绍的所有的 数据结构都是 线性存储结构。本章所介绍的树结构是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合。                                                                          (A)                                                          

  • 本文向大家介绍Oracle SQL树形结构查询,包括了Oracle SQL树形结构查询的使用技巧和注意事项,需要的朋友参考一下 oracle中的select语句可以用START WITH...CONNECT BY PRIOR子句实现递归查询,connect by 是结构化查询中用到的,其基本语法是: 简单说来是将一个树状结构存储在一张表里,比如一个表中存在两个字段: id,parentid那么通过

  • 问题内容: 所以,我的问题是,我想构建这两个表的树: 树应该看起来像: p p_0 p_0_0 p_0_1 p_0_1_0 p_0_1_1 q 有人可以帮我解决递归解决方案吗? 问题答案: 为此,您不需要在数据库中创建2个表,您可以仅从一个表中进行维护,如下所示 生成的数组将像 您需要使用下面的递归函数来实现它 该算法非常简单: 取所有元素的数组和当前父代的ID(最初为0 / nothing /

  • 在Tableau中,可以构建层次结构以可视化数据。可以通过以下步骤在Tableau中创建它: 例如,考虑数据源,例如Sample-Superstore,以及它的维度和度量。 第1步: 首先转到工作表。然后, 选择一个维度,然后右键单击该维度以创建层次结构。 转到“层次结构(Hierarchy)”选项。 并且,单击下面屏幕截图中显示的“创建层次结构(Create Hierarchy)”选项。 第2步

  • 问题内容: 是否有一个良好的可用(标准Java)数据结构来表示Java中的树? 具体来说,我需要代表以下内容: 任何节点上的树都可以有任意数量的子代 每个节点(在根之后)只是一个字符串(其子代也是字符串) 我需要能够获得代表给定节点的输入字符串的所有子代(某种形式的列表或字符串数​​组) 是否有可用的结构或者我需要创建自己的结构(如果这样的话,实施建议会很好)。 问题答案: 这里: 那是可用于或任

  • 问题内容: 我有一个jenkins管道,其设置如下,其中Build A是管道的开始,并在完成时触发构建B,依此类推(如下所示)。到目前为止,我已经实现了Build A,B和C。我使用了Jenkins参数化的Trigger插件作为构建后的动作来触发我的构建。 无论如何,在构建B完成之后,有什么我可以根据构建B之后的构建用fork启动构建的参数的方法,如下所示。Build C和Build D是将部署到

  • C/C++ 数组允许定义可存储相同类型数据项的变量,但是结构是 C++ 中另一种用户自定义的可用的数据类型,它允许您存储不同类型的数据项。 结构用于表示一条记录,假设您想要跟踪图书馆中书本的动态,您可能需要跟踪每本书的下列属性: Title :标题 Author :作者 Subject :类目 Book ID :书的 ID 定义结构 为了定义结构,您必须使用 struct 语句。struct 语句