这篇文章是由Mozilla的Identity团队带来的 A Node.JS Holiday Season系列文章的首篇,该团队上个月发布了 Persona的第一个测试版本。在开发Persona时我们构建了一系列的工具,包括了从调试,到本地化,到依赖管理以及更多的方面。在这一系列的文章中我们将与社区分享我们的经验和这些工具,这对任何想用node.js建立一个高可用性服务的人都很有用。我们希望您能喜欢这些文章,并期待看到您的想法和贡献。
我们将从一篇关于Node.js的实质性问题:内存泄漏的主题文章开始。我们会介绍 node-memwatch — 一个帮助发现并隔离Node中的内存泄漏问题的函数库。
为什么自寻烦恼?
关于追踪内存泄漏问得最多的问题就是,“为什么要自寻烦恼?”。难道没有更紧迫的问题需要先解决吗?为什么不选择不时地重启服务,或为之分配更多的RAM?为了回答这些问题,我们提出了以下三点建议:
1.也许你不在乎不断增长的内存占用,但V8在乎(V8是Node运行时的引擎)。随着内存泄漏的增长,V8对垃圾收集器越来越具有攻击性,这会使你的应用运行速度变慢。所以,在Node上,内存泄漏会损害程序性能。
2.内存泄漏可能触发其他类型的失败。内存泄漏的代码可能会持续的引用有限的资源。你可能会耗尽文件描述符;你还可能会突然不能建立新的数据库连接。这类问题可能在你的应用耗尽内存前很早就会暴露出来,但它仍然会是你陷入困境。
3.最后,你的应用迟早会崩溃,并且在你的应用受到欢迎时肯定会发生。所有人都会在Hacker News上嘲笑你,讽刺你,这样你就悲剧了。
溃千里之堤的蚁穴在哪里?
在构建复杂应用的时候,很多地方都可能发生内存泄露。 闭包可能是最广为人知也是最声名狼藉的。因为闭包保留了对其作用域内的东西的引用,而这正是通常的内存泄露之源。
闭包泄露往往只有在有人去寻找它们的时候才能发现。但是在Node的异步世界里,我们随时随地的通过回调函数不停的生成闭包。如果这些回调函数没有在创建后立刻使用,分配的内存就会持续增长,那些看起来没有内存泄露问题的代码也会产生泄露。而这种问题更难发现。
你的应用也可能由于上游代码的问题导致内存泄露。也许你能定位到出现内存泄露的代码,但是你可能只能眼巴巴地盯着你那完美无缺的代码然后困惑于这到底是怎么泄露的!
正是这些难以定位的内存泄露促使我们想要一个node-memwatch这样的工具。传说几个月以前,我们的Lloyd Hilaiel把他自己锁在一个小房间里两天,试着追踪一个在压力测试下变得非常明显的内存泄露问题。(顺便说下,尽请期待Lloyd即将到来的关于负荷测试的文章)
经过两天的努力,他终于发现了Node内核中的元凶:http.ClientRequest中的事件监听器没有被释放。(最终修复这个问题的补丁只有两个但却至关重要的字母)。正是这次痛苦的经历促使Lloyd想要写一个能够帮助查找内存泄露的工具。
内存泄露定位工具
现在已经有许多好用且不断增强的工具用于定位Node.js应用的内存泄露。下面是其中的一些:
上面的这些工具我们都很喜欢,但是没有一个适用于我们的场景。Web Inspector对于开发中的应用非常棒,但是很难用于热部署的场景,尤其是在多服务器和涉及子进程的时候。同样的,在长时间高负载运行中出现的内存泄露也很难复现。像dtrace和libumem这样的工具虽然让人印象深刻,但是不是所有的操作系统都能用。
Enternode-memwatch
我们需要一个跨平台的调试库,当我们的程序可能存在内存泄漏时,它不需要设备告诉我们,并且会帮我们找到哪里存在泄漏。所以我们实现了node-memwatch。
它给我们提供三件东西:
一个‘泄漏'事件发射器
memwatch.on('leak', function(info) { // look at info to find out about what might be leaking });
一个‘状态事件发射器
var memwatch = require('memwatch'); memwatch.on('stats', function(stats) { // do something with post-gc memory usage stats });
一个堆内存区分类
var hd = new memwatch.HeapDiff(); // your code here ... var diff = hd.end();
并且还有一个在测试时很有用处的,可以触发垃圾收集器的功能。好吧,一共四点。
var stats = memwatch.gc();
memwatch.on('stats', ...): Post-GC堆统计
node-memwatch能够在任何一个JS对象分配之前,紧随着一次完整的垃圾回收和内存压缩发出一个内存使用样本。(它使用了V8的post-gc钩子,V8::AddGCEpilogueCallback,来在每次垃圾回收触发时收集堆使用信息)
统计数据包括:
这里有一个展示存在内存泄露的应用的数据看起来是什么样的例子。下面的图表随着时间追踪内存的使用。疯狂的绿线展示了process.memoryUsage()报告的内容。红线展示了node_memwatch报告的current_base。左下侧的盒子展示了附加信息。
注意Incr GCs非常高。那说明V8在拼命的尝试清理内存。
memwatch.on('leak', ...): 堆分配趋势
我们定义了一个简单的侦测算法来提醒你应用程序可能存在内存泄漏。即如果经过连续五次GC,内存仍被持续分配而没有得到释放,node-memwatch就会发出一个leak事件。事件的具体信息格式是明了易读的,就像这样:
{ start: Fri, 29 Jun 2012 14:12:13 GMT, end: Fri, 29 Jun 2012 14:12:33 GMT, growth: 67984, reason: 'heap growth over 5 consecutive GCs (20s) - 11.67 mb/hr' }
memwatch.HeapDiff(): 查找泄漏元凶
最后,node-memwatch能比较堆上对象的名称和分配数量的快照,其对比前后的差异可以帮助找出导致内存泄漏的元凶。
var hd = new memwatch.HeapDiff(); // Your code here ... var diff = hd.end();
对比产生的内容就像这样:
{ "before": { "nodes": 11625, "size_bytes": 1869904, "size": "1.78 mb" }, "after": { "nodes": 21435, "size_bytes": 2119136, "size": "2.02 mb" }, "change": { "size_bytes": 249232, "size": "243.39 kb", "freed_nodes": 197, "allocated_nodes": 10007, "details": [ { "what": "Array", "size_bytes": 66688, "size": "65.13 kb", "+": 4, "-": 78 }, { "what": "Code", "size_bytes": -55296, "size": "-54 kb", "+": 1, "-": 57 }, { "what": "LeakingClass", "size_bytes": 239952, "size": "234.33 kb", "+": 9998, "-": 0 }, { "what": "String", "size_bytes": -2120, "size": "-2.07 kb", "+": 3, "-": 62 } ] } }
HeapDiff方法在进行数据采样前会先进行一次完整的垃圾回收,以使得到的数据不会充满太多无用的信息。memwatch的事件处理会忽略掉由HeapDiff触发的垃圾回收事件,所以在stats事件的监听回调函数中你可以安全地调用HeapDiff方法。
本文向大家介绍浅析Java中的内存泄漏,包括了浅析Java中的内存泄漏的使用技巧和注意事项,需要的朋友参考一下 ava最明显的一个优势就是它的内存管理机制。你只需简单创建对象,java的垃圾回收机制负责分配和释放内存。然而情况并不像想像的那么简单,因为在Java应用中经常发生内存泄漏。 本教程演示了什么是内存泄漏,为什么会发生内存泄漏以及如何预防内存泄漏。 什么是内存泄漏? 定义:如果对象在应用中
问题内容: 是否有一些工具可以检测Node.js中的内存泄漏?并告诉我您在测试nodejs应用程序方面的经验。 问题答案: 以下工具对于发现内存泄漏很有用: 节点检查器 还有一个教程可以帮助您在此处查找内存泄漏: https://github.com/felixge/node-memory-leak- tutorial
我有一个课程调度问题,带有用于分数计算的约束流。当求解分配的堆时,它会不断增加,因此在几个小时后甚至超过8GB,我得到了一个java.lang.OutOfMemoryError:java堆空间。正如optaplanner文档中所述,堆大小在求解器阶段应保持不变。我需要关于这种行为的问题以及如何调试的建议。 optaplanners toList ConstraintCollector中提供的复制器
问题内容: 我们知道node.js为我们提供了强大的功能,但强大的功能带来了巨大的责任。 据我所知,V8引擎不进行任何垃圾收集。因此,我们应该避免什么最常见的错误,以确保没有内存从节点服务器泄漏。 编辑: 对不起,V8确实具有强大的垃圾收集器。 问题答案: 据我所知,V8引擎不进行任何垃圾收集。 V8内置了强大而智能的垃圾收集器。 您的主要问题是不了解闭包如何维护对外部函数的范围和上下文的引用。这
我尝试用一个大表(大约一万条记录)中的记录填充JdbcRowSet。我尝试了两个变体(参见下面的代码): 创建连接对象,使用JdbcRowSetImpl(connection)实例化,在循环中执行查询。 使用JdbcRowSetImpl(DriverManager.GetConnection(“jdbc:....”)实例化,在循环中执行查询。 第一个变体会导致内存泄漏,直到堆满为止。第二个变体没有
本文向大家介绍粗略分析Python中的内存泄漏,包括了粗略分析Python中的内存泄漏的使用技巧和注意事项,需要的朋友参考一下 引子 之前一直盲目的认为 Python 不会存在内存泄露, 但是眼看着上线的项目随着运行时间的增长 而越来越大的内存占用, 我意识到我写的程序在发生内存泄露, 之前 debug 过 logging 模块导致的内存泄露. 目前看来, 还有别的地方引起的内存泄露. 经过一天的