为什么将CSV的数据发到kafka
如何将CSV的数据发送到kafka
前面的图可以看出,读取CSV再发送消息到kafka的操作是Java应用所为,因此今天的主要工作就是开发这个Java应用,并验证;
版本信息
关于数据集
列名称 | 说明 |
---|---|
用户ID | 整数类型,序列化后的用户ID |
商品ID | 整数类型,序列化后的商品ID |
商品类目ID | 整数类型,序列化后的商品所属类目ID |
行为类型 | 字符串,枚举类型,包括('pv', 'buy', 'cart', 'fav') |
时间戳 | 行为发生的时间戳 |
时间字符串 | 根据时间戳字段生成的时间字符串 |
Java应用简介
编码前,先把具体内容列出来,然后再挨个实现:
上述五个类即可完成Java应用的工作,接下来开始编码吧;
直接下载源码
如果您不想写代码,您可以直接从GitHub下载这个工程的源码,地址和链接信息如下表所示:
名称 | 链接 | 备注 |
---|---|---|
项目主页 | https://github.com/zq2599/blog_demos | 该项目在GitHub上的主页 |
git仓库地址(https) | https://github.com/zq2599/blog_demos.git | 该项目源码的仓库地址,https协议 |
git仓库地址(ssh) | git@github.com:zq2599/blog_demos.git | 该项目源码的仓库地址,ssh协议 |
这个git项目中有多个文件夹,本章源码在flinksql这个文件夹下,如下图红框所示:
编码
创建maven工程,pom.xml如下,比较重要的jackson和javacsv的依赖:
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.bolingcavalry</groupId> <artifactId>flinksql</artifactId> <version>1.0-SNAPSHOT</version> <properties> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <flink.version>1.10.0</flink.version> <kafka.version>2.2.0</kafka.version> <java.version>1.8</java.version> <scala.binary.version>2.11</scala.binary.version> <maven.compiler.source>${java.version}</maven.compiler.source> <maven.compiler.target>${java.version}</maven.compiler.target> </properties> <dependencies> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>${kafka.version}</version> </dependency> <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.9.10.1</version> </dependency> <!-- Logging dependencies --> <dependency> <groupId>org.slf4j</groupId> <artifactId>slf4j-log4j12</artifactId> <version>1.7.7</version> <scope>runtime</scope> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.17</version> <scope>runtime</scope> </dependency> <dependency> <groupId>net.sourceforge.javacsv</groupId> <artifactId>javacsv</artifactId> <version>2.0</version> </dependency> </dependencies> <build> <plugins> <!-- Java Compiler --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.1</version> <configuration> <source>${java.version}</source> <target>${java.version}</target> </configuration> </plugin> <!-- Shade plugin to include all dependencies --> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>3.0.0</version> <executions> <!-- Run shade goal on package phase --> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <artifactSet> <excludes> </excludes> </artifactSet> <filters> <filter> <!-- Do not copy the signatures in the META-INF folder. Otherwise, this might cause SecurityExceptions when using the JAR. --> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> </configuration> </execution> </executions> </plugin> </plugins> </build> </project>
从CSV读取记录的工具类:UserBehaviorCsvFileReader,后面在主程序中会用到java8的Steam API来处理集合,所以UserBehaviorCsvFileReader实现了Supplier接口:
public class UserBehaviorCsvFileReader implements Supplier<UserBehavior> { private final String filePath; private CsvReader csvReader; public UserBehaviorCsvFileReader(String filePath) throws IOException { this.filePath = filePath; try { csvReader = new CsvReader(filePath); csvReader.readHeaders(); } catch (IOException e) { throw new IOException("Error reading TaxiRecords from file: " + filePath, e); } } @Override public UserBehavior get() { UserBehavior userBehavior = null; try{ if(csvReader.readRecord()) { csvReader.getRawRecord(); userBehavior = new UserBehavior( Long.valueOf(csvReader.get(0)), Long.valueOf(csvReader.get(1)), Long.valueOf(csvReader.get(2)), csvReader.get(3), new Date(Long.valueOf(csvReader.get(4))*1000L)); } } catch (IOException e) { throw new NoSuchElementException("IOException from " + filePath); } if (null==userBehavior) { throw new NoSuchElementException("All records read from " + filePath); } return userBehavior; } }
每条记录对应的Bean类:UserBehavior,和CSV记录格式保持一致即可,表示时间的ts字段,使用了JsonFormat注解,在序列化的时候以此来控制格式:
public class UserBehavior { @JsonFormat private long user_id; @JsonFormat private long item_id; @JsonFormat private long category_id; @JsonFormat private String behavior; @JsonFormat(shape = JsonFormat.Shape.STRING, pattern = "yyyy-MM-dd'T'HH:mm:ss'Z'") private Date ts; public UserBehavior() { } public UserBehavior(long user_id, long item_id, long category_id, String behavior, Date ts) { this.user_id = user_id; this.item_id = item_id; this.category_id = category_id; this.behavior = behavior; this.ts = ts; } }
Java对象序列化成JSON的序列化类:JsonSerializer
public class JsonSerializer<T> { private final ObjectMapper jsonMapper = new ObjectMapper(); public String toJSONString(T r) { try { return jsonMapper.writeValueAsString(r); } catch (JsonProcessingException e) { throw new IllegalArgumentException("Could not serialize record: " + r, e); } } public byte[] toJSONBytes(T r) { try { return jsonMapper.writeValueAsBytes(r); } catch (JsonProcessingException e) { throw new IllegalArgumentException("Could not serialize record: " + r, e); } } }
向kafka发送消息的工具类:KafkaProducer:
public class KafkaProducer implements Consumer<UserBehavior> { private final String topic; private final org.apache.kafka.clients.producer.KafkaProducer<byte[], byte[]> producer; private final JsonSerializer<UserBehavior> serializer; public KafkaProducer(String kafkaTopic, String kafkaBrokers) { this.topic = kafkaTopic; this.producer = new org.apache.kafka.clients.producer.KafkaProducer<>(createKafkaProperties(kafkaBrokers)); this.serializer = new JsonSerializer<>(); } @Override public void accept(UserBehavior record) { // 将对象序列化成byte数组 byte[] data = serializer.toJSONBytes(record); // 封装 ProducerRecord<byte[], byte[]> kafkaRecord = new ProducerRecord<>(topic, data); // 发送 producer.send(kafkaRecord); // 通过sleep控制消息的速度,请依据自身kafka配置以及flink服务器配置来调整 try { Thread.sleep(500); }catch(InterruptedException e){ e.printStackTrace(); } } /** * kafka配置 * @param brokers The brokers to connect to. * @return A Kafka producer configuration. */ private static Properties createKafkaProperties(String brokers) { Properties kafkaProps = new Properties(); kafkaProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers); kafkaProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName()); kafkaProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName()); return kafkaProps; } }
最后是应用类SendMessageApplication,CSV文件路径、kafka的topic和borker地址都在此设置,另外借助java8的Stream API,只需少量代码即可完成所有工作:
public class SendMessageApplication { public static void main(String[] args) throws Exception { // 文件地址 String filePath = "D:\\temp\\202005\\02\\UserBehavior.csv"; // kafka topic String topic = "user_behavior"; // kafka borker地址 String broker = "192.168.50.43:9092"; Stream.generate(new UserBehaviorCsvFileReader(filePath)) .sequential() .forEachOrdered(new KafkaProducer(topic, broker)); } }
验证
./kafka-console-consumer.sh \ --bootstrap-server 127.0.0.1:9092 \ --topic user_behavior \ --consumer-property group.id=old-consumer-test \ --consumer-property consumer.id=old-consumer-cl \ --from-beginning
至此,通过Java应用模拟用户行为消息流的操作就完成了,接下来的flink实战就用这个作为数据源;
以上就是Java将CSV的数据发送到kafka得示例的详细内容,更多关于Java CSV的数据发送到kafka的资料请关注小牛知识库其它相关文章!
我的管道是IoTCore->pub/sub->Dataflow->bigQuery。最初,我得到的数据是Json格式的,管道工作正常。现在我需要转向csv,问题是我使用的Google定义的数据流模板使用Json输入而不是csv。是否有一种简单的方法通过数据流将csv数据从pub/sub转移到bigquery。模板可能会改变,但它是用Java实现的,我从来没有用过,所以需要很长时间来实现。我还考虑过
我有一个场景,我需要向Kafka主题发送大量数据(超过一百万条记录)。从数据库中获取数据并遍历每条记录,同时将每条记录发布到Kafka主题中。目前,我已经添加了Kafka事务性,并实现了原子性(发布所有内容或不发布任何内容)。但当我尝试在同一个事务中发布超过35k条记录时,出现网关超时异常。 在《SpringKafka》中,有没有更好的方法来处理这种情况?
我试图使用pyspark将每日批次的数据发送到Kafka主题,但我当前收到以下错误: Traceback(最近的最后一次调用): File", line 5, in File"/usr/local/rms/lib/hdp26_c5000/park2/python/pyspark/sql/readwriter.py", line 548, in保存自己。_jwrite.save()File"/usr
我正在使用Python语言。我有csv文件,我需要转换成json并发送到kafka,然后发送到ElasticSearch。 我能够将Csv转换为Json并发送给Kafka消费者。如何从Kafka Consumer向ElasticSearch获取数据
更新后出错 连接独立属性文件 连接帖子属性文件 上面的错误是当我通过apache kafka./bin/connect-standalone.shconfig/connect-standalone.propertiesconfig.postgresql.properties时引起的。 然后,我尝试并实现了本链接中提到的流程: https://hellokoding.com/kafka-connec
我是新来的,我有一个这样的名单 我使用下面的代码将列表中的数据发送给Kafka 我的输出如下: 但我希望我的输出是这样的(列表中的每个值都是行): 我们怎么能那样做?请忽略我的错误