本文基于jdk1.8进行分析。
ReentrantLock是一个可重入锁,在ConcurrentHashMap中使用了ReentrantLock。
首先看一下源码中对ReentrantLock的介绍。如下图。ReentrantLock是一个可重入的排他锁,它和synchronized的方法和代码有着相同的行为和语义,但有更多的功能。ReentrantLock是被最后一个成功lock锁并且还没有unlock的线程拥有着。如果锁没有被别的线程拥有,那么一个线程调用lock方法,就会成功获取锁并返回。如果当前线程已经拥有该锁,那么lock方法会立刻返回。这个可以通过isHeldByCurrentThread方法和getHoldCount方法进行验证。除了这部分介绍外,类前面的javadoc文档很长,就不在这里全部展开。随着后面介绍源码,会一一涉及到。
/** * A reentrant mutual exclusion {@link Lock} with the same basic * behavior and semantics as the implicit monitor lock accessed using * {@code synchronized} methods and statements, but with extended * capabilities. * <p>A {@code ReentrantLock} is <em>owned</em> by the thread last * successfully locking, but not yet unlocking it. A thread invoking * {@code lock} will return, successfully acquiring the lock, when * the lock is not owned by another thread. The method will return * immediately if the current thread already owns the lock. This can * be checked using methods {@link #isHeldByCurrentThread}, and {@link * #getHoldCount}.
首先看一下成员变量,如下图。ReentrantLock只有一个成员变量sync,即同步器,这个同步器提供所有的机制。Sync是AbstractQueuedSynchronizer的子类,同时,Sync有2个子类,NonfairSync和FairSync,分别是非公平锁和公平锁。Sync,NonfaireSync和FairSync的具体实现后面再讲。
/** Synchronizer providing all implementation mechanics **/ private final Sync sync;
下面看一下构造函数。如下图。可以看到,ReentrantLock默认是非公平锁,它可以通过参数,指定初始化为公平锁或非公平锁。
/** * Creates an instance of {@code ReentrantLock}. * This is equivalent to using {@code ReentrantLock(false)}. **/ public ReentrantLock() { sync = new NonfairSync(); } /** * Creates an instance of {@code ReentrantLock} with the * given fairness policy. * @param fair {@code true} if this lock should use a fair ordering policy **/ public ReentrantLock(boolean fair) { sync = fair ? new FairSync() : new NonfairSync(); }
下面看一下ReentrantLock的主要方法。首先是lock方法。如下图。lock方法的实现很简单,就是调用Sync的lock方法。而Sync的lock方法是个抽象的,具体实现在NonfairSync和FairSync中。这里我们先不展开讲,而是先读一下lock方法的注释,看看它的作用。lock方法的作用是获取该锁。分为3种情况。
1,如果锁没有被别的线程占有,那么当前线程就可以获取到锁并立刻返回,并把锁计数设置为1。
2,如果当前线程已经占有该锁了,那么就会把锁计数加1,立刻返回。
3,如果锁被另一个线程占有了,那么当前线程就无法再被线程调度,并且开始睡眠,直到获取到锁,在获取到到锁时,会把锁计数设置为1。
lockInterruptibly方法与lock功能类似,但lockInterruptibly方法在等待的过程中,可以响应中断。
/** * Acquires the lock. * <p>Acquires the lock if it is not held by another thread and returns * immediately, setting the lock hold count to one. * <p>If the current thread already holds the lock then the hold * count is incremented by one and the method returns immediately. * <p>If the lock is held by another thread then the * current thread becomes disabled for thread scheduling * purposes and lies dormant until the lock has been acquired, * at which time the lock hold count is set to one. **/ public void lock() { sync.lock(); } public void lockInterruptibly() throws InterruptedException { sync.acquireInterruptibly(1); }
下面,详细看一下非公平锁和公平锁中对lock函数的实现。如下图。下图同时列出了公平锁和非公平锁中lock的实现逻辑。从注释和代码逻辑中,都可以看出,非公平锁进行lock时,先尝试立刻闯入(抢占),如果成功,则获取到锁,如果失败,再执行通常的获取锁的行为,即acquire(1)。
/** * 非公平锁中的lock * Performs lock. Try immediate barge, backing up to normal * acquire on failure. **/ final void lock() { if (compareAndSetState(0, 1)) setExclusiveOwnerThread(Thread.currentThread()); else acquire(1); } //公平锁中的lock final void lock() { acquire(1); }
那么,我们首先了解下,非公平锁“尝试立刻闯入”,究竟做了什么。稍后再继续讲解通常的获取锁的行为。下图是立即闯入行为compareAndSetState(0, 1)的实现。从compareAndSetState函数的注释中,可以知道,如果同步状态值与期望值相等,那么就把它的值设置为updated值。否则同步状态值与期望值不相等,则返回false。这个操作和volatile有着相同的内存语义,也就是说,这个操作对其他线程是可见的。compareAndSetState函数注释里描述的功能,是通过unsafe.compareAndSwapInt方法实现的,而unsafe.compareAndSwapInt是一个native方法,是用c++实现的。那么继续追问,c++++底层是怎么实现的?C++底层是通过CAS指令来实现的。什么是CAS指令呢?来自维基百科的解释是,CAS,比较和交换,Compare and Swap,是用用于实现多线程原子同步的指令。它将内存位置的内容和给定值比较,只有在相同的情况下,将该内存的值设置为新的给定值。这个操作是原子操作。那么继续追问,CAS指令的原子性,是如何实现的呢?我们都知道指令时CPU来执行的,在多CPU系统中,内存是共享的,内存和多个cpu都挂在总线上,当一个CPU执行CAS指令时,它会先将总线LOCK位点设置为高电平。如果别的CPU也要执行CAS执行,它会发现总线LOCK位点已经是高电平了,则无法执行CAS执行。CPU通过LOCK保证了指令的原子执行。
现在来看一下非公平锁的lock行为,compareAndSetState(0, 1),它期望锁状态为0,即没有别的线程占用,并把新状态设置为1,即标记为占用状态。如果成功,则非公平锁成功抢到锁,之后setExclusiveOwnerThread,把自己设置为排他线程。非公平锁这小子太坏了。如果抢占失败,则执行与公平锁相同的操作。
/** * Atomically sets synchronization state to the given updated * value if the current state value equals the expected value. * This operation has memory semantics of a {@code volatile} read * and write. * @param expect the expected value * @param update the new value * @return {@code true} if successful. False return indicates that the actual * value was not equal to the expected value. **/ protected final boolean compareAndSetState(int expect, int update) { // See below for intrinsics setup to support this return unsafe.compareAndSwapInt(this, stateOffset, expect, update); } public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);
下面看一下公平锁获取锁时的行为。如下图。这部分的逻辑有些多,请阅读代码中的注释进行理解。
/** * 公平锁的lock **/ final void lock() { acquire(1); } /** * Acquires in exclusive mode, ignoring interrupts. Implemented * by invoking at least once {@link #tryAcquire}, * returning on success. Otherwise the thread is queued, possibly * repeatedly blocking and unblocking, invoking {@link * #tryAcquire} until success. This method can be used * to implement method {@link Lock#lock}. * @param arg the acquire argument. This value is conveyed to * {@link #tryAcquire} but is otherwise uninterpreted and * can represent anything you like. **/ public final void acquire(int arg) { /** * acquire首先进行tryAcquire()操作。如果tryAcquire()成功时则获取到锁,即刻返回。 * 如果tryAcquire()false时,会执行acquireQueued(addWaiter(Node.EXCLUSIVE), arg) * 操作。如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg)true时,则当前线程中断自己。 * 如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg)false,则返回。 * 其中tryAcquire()操作在NonfairSync中和FairSync中实现又有所区别。 **/ if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); } /** * NonfairSync中的tryAcquire。 * @param acquires * @return **/ protected final boolean tryAcquire(int acquires) { return nonfairTryAcquire(acquires); } /** * Performs non-fair tryLock. tryAcquire is implemented in * subclasses, but both need nonfair try for trylock method. **/ final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); //首先获取当前同步状态值 int c = getState(); if (c == 0) { //c为0,表示目前没有线程占用锁。没有线程占用锁时,当前线程尝试抢锁,如果抢锁成功,则返回true。 if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { //c不等于0时表示锁被线程占用。如果是当前线程占用了,则将锁计数加上acquires,并返回true。 int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } //以上情况都不是时,返回false,表示非公平抢锁失败。 return false; } /** * Fair version of tryAcquire. Don't grant access unless * recursive call or no waiters or is first. * 这个是公平版本的tryAcquire **/ protected final boolean tryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { //c=0时表示锁未被占用。这里是先判断队列中前面是否有别的线程。没有别的线程时,才进行CAS操作。 //公平锁之所以公平,正是因为这里。它发现锁未被占用时,首先判断等待队列中是否有别的线程已经在等待了。 //而非公平锁,发现锁未被占用时,根本不管队列中的排队情况,上来就抢。 if (!hasQueuedPredecessors() && compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; } /** * Acquires in exclusive uninterruptible mode for thread already in * queue. Used by condition wait methods as well as acquire. * 当抢锁失败时,先执行addWaiter(Node.EXCLUSIVE),将当前线程加入等待队列,再执行该方法。 * 该方法的作用是中断当前线程,并进行检查,知道当前线程是队列中的第一个线程,并且抢锁成功时, * 该方法返回。 * @param node the node * @param arg the acquire argument * @return {@code true} if interrupted while waiting **/ final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
接下来是tryLock方法。代码如下。从注释中我们可以理解到,只有当调用tryLock时锁没有被别的线程占用,tryLock才会获取锁。如果锁没有被另一个线程占用,那么就获取锁,并立刻返回true,并把锁计数设置为1. 甚至在锁被设置为公平排序的情况下,若果锁可用,调用tryLock会立刻获取锁,而不管有没有别的线程在等待锁了。从这里我们总结出,不管可重入锁是公平锁还是非公平锁,tryLock方法只会是非公平的。
/** * Acquires the lock only if it is not held by another thread at the time * of invocation. * <p>Acquires the lock if it is not held by another thread and * returns immediately with the value {@code true}, setting the * lock hold count to one. Even when this lock has been set to use a * fair ordering policy, a call to {@code tryLock()} <em>will</em> * immediately acquire the lock if it is available, whether or not * other threads are currently waiting for the lock. * This "barging" behavior can be useful in certain * circumstances, even though it breaks fairness. If you want to honor * the fairness setting for this lock, then use * {@link #tryLock(long, TimeUnit) tryLock(0, TimeUnit.SECONDS) } * which is almost equivalent (it also detects interruption). * <p>If the current thread already holds this lock then the hold * count is incremented by one and the method returns {@code true}. * <p>If the lock is held by another thread then this method will return * immediately with the value {@code false}. * @return {@code true} if the lock was free and was acquired by the * current thread, or the lock was already held by the current * thread; and {@code false} otherwise **/ public boolean tryLock() { return sync.nonfairTryAcquire(1); } public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireNanos(1, unit.toNanos(timeout)); }
接下来是释放锁的方法unlock。代码如下。unlock方式的实现,是以参数1来调用sync.release方法。而release方法是如何实现的呢?release方法首先会调用tryRelease方法,如果tryRelease成功,则唤醒后继者线程。而tryRelease的实现过程十分清晰,首先获取锁状态,锁状态减去参数(放锁次数),得到新状态。然后判断持有锁的线程是否为当前线程,如果不是当前线程,则抛出IllegalMonitorStateException。然后判断,如果新状态为0,说明放锁成功,则把持有锁的线程设置为null,并返回true。如果新状态不为0,则返回false。从tryRelease的返回值来看,它返回的true或false,指的是否成功的释放了该锁。成功的释放该锁的意思是彻底释放锁,别的线程就可以获取锁了。这里要认识到,即便tryRelease返回false,它也只是说明了锁没有完全释放,本次调用的这个释放次数值,依然是释放成功的。
/** * Attempts to release this lock. * <p>If the current thread is the holder of this lock then the hold * count is decremented. If the hold count is now zero then the lock * is released. If the current thread is not the holder of this * lock then {@link IllegalMonitorStateException} is thrown. * @throws IllegalMonitorStateException if the current thread does not * hold this lock **/ public void unlock() { sync.release(1); } /** * Releases in exclusive mode. Implemented by unblocking one or * more threads if {@link #tryRelease} returns true. * This method can be used to implement method {@link Lock#unlock}. * @param arg the release argument. This value is conveyed to * {@link #tryRelease} but is otherwise uninterpreted and * can represent anything you like. * @return the value returned from {@link #tryRelease} **/ public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; } protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; } /** * Wakes up node's successor, if one exists. * @param node the node **/ private void unparkSuccessor(Node node) { /** * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. **/ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /** * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. **/ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }
接下来是newCondition方法。关于Condition这里不展开介绍,只是了解下该方法的作用。如下图。该方法返回一个和这个锁实例一起使用的Condition实例。返回的Condition实例支持和Object的监控方法例如wait-notify和notifyAll相同的用法。
/** * Returns a {@link Condition} instance for use with this * {@link Lock} instance. * <p>The returned {@link Condition} instance supports the same * usages as do the {@link Object} monitor methods ({@link * Object#wait() wait}, {@link Object#notify notify}, and {@link * Object#notifyAll notifyAll}) when used with the built-in * monitor lock. * <ul> * <li>If this lock is not held when any of the {@link Condition} * {@linkplain Condition#await() waiting} or {@linkplain * Condition#signal signalling} methods are called, then an {@link * IllegalMonitorStateException} is thrown. * <li>When the condition {@linkplain Condition#await() waiting} * methods are called the lock is released and, before they * return, the lock is reacquired and the lock hold count restored * to what it was when the method was called. * <li>If a thread is {@linkplain Thread#interrupt interrupted} * while waiting then the wait will terminate, an {@link * InterruptedException} will be thrown, and the thread's * interrupted status will be cleared. * <li> Waiting threads are signalled in FIFO order. * <li>The ordering of lock reacquisition for threads returning * from waiting methods is the same as for threads initially * acquiring the lock, which is in the default case not specified, * but for <em>fair</em> locks favors those threads that have been * waiting the longest. * </ul> * @return the Condition object **/ public Condition newCondition() { return sync.newCondition(); }
可重入锁还有一些其他的方法,这里就不一一介绍了。This is the end.
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对小牛知识库的支持。如果你想了解更多相关内容请查看下面相关链接
主要内容:1 ReentrantLock的概述,1.1 ReentrantLock的API方法,1.2 可重入,1.3 公平与非公平,2 ReentrantLock的原理,2.1 基本结构,2.2 构造器,2.3 非公平模式加锁原理,2.4 公平模式加锁原理,2.5 解锁原理,3 ReentrantLock总结Java的ReentrantLock的源码实现,包括加锁、解锁的源码,以及公平性、重入性的实现! 1 ReentrantLock的概述 public class ReentrantLock
本文向大家介绍深入理解Java之HashMap源码剖析,包括了深入理解Java之HashMap源码剖析的使用技巧和注意事项,需要的朋友参考一下 一、HashMap概述 HashMap基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了不同步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺
主要内容:1 什么是Java可重入锁,2 Java可重入锁的优势,3 Java可重入锁的例子1 什么是Java可重入锁 根据Sun公司的说法,Java锁是可重入的,这意味着,如果从方法中调用方法,则Java线程可以将同一把锁用于不同的同步方法。 2 Java可重入锁的优势 它避免了单线程死锁。 3 Java可重入锁的例子 让我们通过以下示例了解Java可重入锁: 在此类中,m和n是同步方法。m() 方法在内部调用n() 方法。 现在让我们在线程上调用m() 方法。在下面给出的类中,我们使
为什么java可重入锁不会导致死锁?
本文向大家介绍详解java并发之重入锁-ReentrantLock,包括了详解java并发之重入锁-ReentrantLock的使用技巧和注意事项,需要的朋友参考一下 前言 目前主流的锁有两种,一种是synchronized,另一种就是ReentrantLock,JDK优化到现在目前为止synchronized的性能已经和重入锁不分伯仲了,但是重入锁的功能和灵活性要比这个关键字多的多,所以重入锁是
我有一个名为“H2O问题”的家庭作业,我应该实现一个名为H2OBarrier的类,它有3种方法。 HReady,氢原子(线程)就绪时称为的方法 OReady,氧原子(线程)就绪时调用的方法 makeWater,当2个氢原子和1个氧原子准备就绪时称为方法 我应该使用Java可重入锁和条件来执行此操作。 这是我目前为止的代码,我想知道我是否正确地使用了lock和unlock。 我应该在我的 makeW