当前位置: 首页 > 编程笔记 >

仅利用30行Python代码来展示X算法

司寇祺
2023-03-14
本文向大家介绍仅利用30行Python代码来展示X算法,包括了仅利用30行Python代码来展示X算法的使用技巧和注意事项,需要的朋友参考一下

假如你对数独解法感兴趣,你可能听说过精确覆盖问题。给定全集 X 和 X 的子集的集合 Y ,存在一个 Y 的子集 Y*,使得 Y* 构成 X 的一种分割。

这儿有个Python写的例子。
 

X = {1, 2, 3, 4, 5, 6, 7}
Y = {
  'A': [1, 4, 7],
  'B': [1, 4],
  'C': [4, 5, 7],
  'D': [3, 5, 6],
  'E': [2, 3, 6, 7],
  'F': [2, 7]}

这个例子的唯一解是['B', 'D', 'F']。

精确覆盖问题是NP完备(译注:指没有任何一个够快的方法可以在合理的时间内,意即多项式时间 找到答案)。X算法是由大牛高德纳发明并实现。他提出了一种高效的实现技术叫舞蹈链,使用双向链表来表示该问题的矩阵。

然而,舞蹈链实现起来可能相当繁琐,并且不易写地正确。接下来就是展示Python奇迹的时刻了!有天我决定用Python来编写X 算法,并且我想出了一个有趣的舞蹈链变种。
算法

主要的思路是使用字典来代替双向链表来表示矩阵。我们已经有了 Y。从它那我们能快速的访问每行的列元素。现在我们还需要生成行的反向表,换句话说就是能从列中快速访问行元素。为实现这个目的,我们把X转换为字典。在上述的例子中,它应该写为
 

X = {
  1: {'A', 'B'},
  2: {'E', 'F'},
  3: {'D', 'E'},
  4: {'A', 'B', 'C'},
  5: {'C', 'D'},
  6: {'D', 'E'},
  7: {'A', 'C', 'E', 'F'}}

眼尖的读者能注意到这跟Y的表示有轻微的不同。事实上,我们需要能快速删除和添加行到每列,这就是为什么我们使用集合。另一方面,高德纳没有提到这点,实际上整个算法中所有行是保持不变的。

以下是算法的代码。
 

def solve(X, Y, solution=[]):
  if not X:
    yield list(solution)
  else:
    c = min(X, key=lambda c: len(X[c]))
    for r in list(X[c]):
      solution.append(r)
      cols = select(X, Y, r)
      for s in solve(X, Y, solution):
        yield s
      deselect(X, Y, r, cols)
      solution.pop()
 
def select(X, Y, r):
  cols = []
  for j in Y[r]:
    for i in X[j]:
      for k in Y[i]:
        if k != j:
          X[k].remove(i)
    cols.append(X.pop(j))
  return cols
 
def deselect(X, Y, r, cols):
  for j in reversed(Y[r]):
    X[j] = cols.pop()
    for i in X[j]:
      for k in Y[i]:
        if k != j:
          X[k].add(i)

真的只有 30 行!
格式化输入

在解决实际问题前,我们需要将输入转换为上面描述的格式。可以这样简单处理

X = {j: set(filter(lambda i: j in Y[i], Y)) for j in X}

但这样太慢了。假如设 X 大小为 m,Y 的大小为 n,则迭代次数为 m*n。在这例子中的数独格子大小为 N,那需要 N^5 次。我们有更好的办法。
 

X = {j: set() for j in X}
for i in Y:
  for j in Y[i]:
    X[j].add(i)

这还是 O(m*n) 的复杂度,但是是最坏情况。平均情况下它的性能会好很多,因为它不需要遍历所有的空格位。在数独的例子中,矩阵中每行恰好有 4 个条目,无论大小,因此它有N^3的复杂度。
优点

  •     简单: 不需要构造复杂的数据结构,所有用到的结构Python都有提供。
  •     可读性: 上述第一个例子是直接从Wikipedia上的范例直接转录下来的!
  •     灵活性: 可以很简单得扩展来解决数独。

求解数独

我们需要做的就是把数独描述成精确覆盖问题。这里有完整的数独解法代码,它能处理任意大小,3×3,5×5,即使是2×3,所有代码少于100行,并包含doctest!(感谢Winfried Plappert 和 David Goodger的评论和建议)

 类似资料:
  • 本文向大家介绍表格展示利器 Bootstrap Table实例代码,包括了表格展示利器 Bootstrap Table实例代码的使用技巧和注意事项,需要的朋友参考一下 1.Bootstrap Bable 全部数据导出分析      在表格导出数据中,发现设置了分页参数,导出的数据仅为表格加载的分页参数数据,于是,针对这样的情况,通过设置分页参数的值,使表格可以加载更多的数据,可达到导出所有数据的功

  • 本文向大家介绍利用python获取Ping结果示例代码,包括了利用python获取Ping结果示例代码的使用技巧和注意事项,需要的朋友参考一下 前言 本文主要跟大家分享了关于利用python获取Ping结果的相关内容,分享出来供大家参考学习,下面话不多说,来一起看看详细的介绍吧。 示例代码: 总结 以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以

  • 示例的Python源代码或者交互界面都可以使用标准reST模块实现.在正常段落后面跟着 :: 开始,再加上适当缩进. 交互界面需包含提示及Python代码的输出. 交互界面没有特别的标记. 在最后一行输入或输出之后,不应出现空的提示; 这是一个什么都不做的例子: >>> 1 + 1 2 >>> 语法高亮显示由 Pygments (如果安装) 优雅的显示: 每个源文件都有高亮语言”highlight

  • 本文向大家介绍Python利用turtle库绘制彩虹代码示例,包括了Python利用turtle库绘制彩虹代码示例的使用技巧和注意事项,需要的朋友参考一下 语言:Python IDE:Python.IDE 需求 做出彩虹效果 颜色空间 RGB模型:光的三原色,共同决定色相 HSB/HSV模型:H色彩,S深浅,B饱和度,H决定色相 需要将HSB模型转换为RGB模型 代码示例: 效果展示: 总结 起初

  • 本文向大家介绍Python 多核并行计算的示例代码,包括了Python 多核并行计算的示例代码的使用技巧和注意事项,需要的朋友参考一下 以前写点小程序其实根本不在乎并行,单核跑跑也没什么问题,而且我的电脑也只有双核四个超线程(下面就统称核好了),觉得去折腾并行没啥意义(除非在做IO密集型任务)。然后自从用上了32核128GB内存,看到 htop 里面一堆空载的核,很自然地就会想这个并行必须去折腾一

  • 在本节中,我们将更加深入地了解Metasploit,我们将看到如何使用它来利用某个服务中存在的漏洞。这是一个代码执行漏洞,可以让我们完全访问目标计算机。回到我们在Nmap中的结果,我们将做与以前一样的事情。复制服务名称,看看它是否有任何漏洞。现在我们查看端口139,它的Samba服务器版本为,就像上一节一样,在Google搜索Samba 3.X漏洞。我们将看到有很多结果,但主要是关于Rapid7方