Erlang中的process——进程是轻量级的,并且进程间无共享。查了很多资料,似乎没人说清楚轻量级进程算是什么概念,继续查找中。。。闲话不提,进入并发编程的世界。本文算是学习笔记,也可以说是《Concurrent Programming in ERLANG》第五张的简略翻译。
1.进程的创建
进程是一种自包含的、分隔的计算单元,并与其他进程并发运行在系统中,在进程间并没有一个继承体系,当然,应用开发者可以设计这样一个继承体系。
进程的创建使用如下语法:
Pid = spawn(Module, FunctionName, ArgumentList)
Pid2 = spawn(Mod, Func, Args)
2.进程间通信
Erlang进程间的通信只能通过发送消息来实现,消息的发送使用!符号:
Pid ! Message
receive Message1 [when Guard1] -> Actions1 ; Message2 [when Guard2] -> Actions2 ;end
每一个Erlang进程都有一个“邮箱”,所有发送到进程的消息都按照到达的顺序存储在“邮箱”里,上面所示的消息Message1,Message2,当它们与“邮箱”里的消息匹配,并且约束(Guard)通过,那么相应的ActionN将执行,并且receive返回的是ActionN的最后一条执行语句的结果。Erlang对“邮箱”里的消息匹配是有选择性的,只有匹配的消息将被触发相应的Action,而没有匹配的消息将仍然保留在“邮箱”里。这一机制保证了没有消息会阻塞其他消息的到达。
消息到达的顺序并不决定消息的优先级,进程将轮流检查“邮箱”里的消息进行尝试匹配。消息的优先级别下文再讲。
如何接受特定进程的消息呢?答案很简单,将发送方(sender)也附送在消息当中,接收方通过模式匹配决定是否接受,比如:
Pid ! {self(),abc}
receive {Pid1,Msg} ->end
3.一些例子
仅说明下书中计数的进程例子,我添加了简单注释:
-module(counter). -compile(export_all). % start(),返回一个新进程,进程执行函数loop start()->spawn(counter, loop,[0]). % 调用此操作递增计数 increment(Counter)-> Counter!increament. % 返回当前计数值 value(Counter)-> Counter!{self(),value}, receive {Counter,Value}-> %返回给调用方 Value end. %停止计数 stop(Counter)-> Counter!{self(),stop}. loop(Val)-> receive %接受不同的消息,决定返回结果 increament-> loop(Val+1); {From,value}-> From!{self(),Val}, loop(Val); stop-> true; %不是以上3种消息,就继续等待 Other-> loop(Val) end.
调用方式:
1> Counter1=counter:start(). <0.30.0> 2> counter:value(Counter1). 0 3> counter:increment(Counter1). increament 4> counter:value(Counter1). 1
4.超时设置
Erlang中的receive语法可以添加一个额外选项:timeout,类似:
receive Message1 [when Guard1] -> Actions1 ; Message2 [when Guard2] -> Actions2 ; after TimeOutExpr -> ActionsT end
after之后的TimeOutExpr表达式返回一个整数time(毫秒级别),时间的精确程度依赖于Erlang在操作系统或者硬件的实现。如果在time毫秒内,没有一个消息被选中,超时设置将生效,也就是ActionT将执行。time有两个特殊值:
1)infinity(无穷大),infinity是一个atom,指定了超时设置将永远不会被执行。
2) 0,超时如果设定为0意味着超时设置将立刻执行,但是系统将首先尝试当前“邮箱”里的消息。
超时的常见几个应用,比如挂起当前进程多少毫秒:
sleep(Time) -> receive after Time -> true end.
比如清空进程的“邮箱”,丢弃“邮箱”里的所有消息:
flush_buffer() -> receive AnyMessage -> flush_buffer() after 0 -> true end.
suspend() -> receive after infinity -> true end.
-module(timer). -export([timeout/2,cancel/1,timer/3]). timeout(Time, Alarm) -> spawn(timer, timer, [self(),Time,Alarm]). cancel(Timer) -> Timer ! {self(),cancel}. timer(Pid, Time, Alarm) -> receive {Pid,cancel} -> true after Time -> Pid ! Alarm end.
5、注册进程
为了给进程发送消息,我们需要知道进程的Pid,但是在某些情况下:在一个很大系统里面有很多的全局servers,或者为了安全考虑需要隐藏进程Pid。为了达到可以发送消息给一个不知道Pid的进程的目的,我们提供了注册进程的办法,给进程们注册名字,这些名字必须是atom。
基本的调用形式:
register(Name, Pid)
unregister(Name)
whereis(Name)
registered()
6.进程的优先级
设定进程的优先级可以使用BIFs:
process_flag(priority, Pri)
7.进程组(process group)
所有的ERLANG进程都有一个Pid与一个他们共有的称为Group Leader相关联,当一个新的进程被创建的时候将被加入同一个进程组。最初的系统进程的Group Leader就是它自身,因此它也是所有被创建进程及子进程的Group Leader。这就意味着Erlang的进程被组织为一棵Tree,其中的根节点就是第一个被创建的进程。下面的BIFs被用于操纵进程组:
group_leader()
返回执行进程的Group Leader的Pid
group_leader(Leader, Pid)
设置进程Pid的Group Leader为进程的Leader
8.Erlang的进程模型很容易去构建Client-Server的模型,书中有一节专门讨论了这一点,着重强调了接口的设计以及抽象层次的隔离问题,不翻译了。
Erlang 的许多原语为大型并发实时系统开发的问题提供了解决方案。其模块系统允许将大型系统构建为概念上的可管理单元。其错误检测机制可用于构建容错软件。其代码加载原语允许在不停机的情况下替换运行时系统的代码。 英文原版
作为对《C++ Concurrency in Action》的中文翻译。
全面记录了 Java 并发编程的相关知识,包括 Java 5 新增加的并发包内的相关类,分析了并发编程中的常见问题,并深入 Java 内存模型,对底层并发机制的实现做了一些分析。
2. 并发的优势和风险 注:相同代码两次并发执行结果不同,不一定违反安全性。例如两个线程一读一写,可能先读后写,也可能先写再读。 3. 多线程并发与线程安全
本章讲解 Rust 中,并发,并行,多线程编程的相关知识。
主要内容:面向读者,前提条件Java是一种多线程编程语言,我们可以使用Java来开发多线程程序。 多线程程序包含两个或多个可同时运行的部分,每个部分可以同时处理不同的任务,从而能更好地利用可用资源,特别是当您的计算机有多个CPU时。多线程使您能够写入多个活动,可以在同一程序中同时进行操作处理。 Java是最初由Sun Microsystems开发并于1995年发布的高级编程语言。Java运行在各种平台上,如Windows,M