本文实例为大家分享了JavaScript SHA512加密算法,供大家参考,具体内容如下
/* * A JavaScript implementation of the Secure Hash Algorithm, SHA-512, as defined * in FIPS 180-2 * Version 2.2 Copyright Anonymous Contributor, Paul Johnston 2000 - 2009. * Other contributors: Greg Holt, Andrew Kepert, Ydnar, Lostinet * Distributed under the BSD License * See http://pajhome.org.uk/crypt/md5 for details. * http://www.sharejs.com/codes */ /* * Configurable variables. You may need to tweak these to be compatible with * the server-side, but the defaults work in most cases. */ var hexcase = 0; /* hex output format. 0 - lowercase; 1 - uppercase */ var b64pad = ""; /* base-64 pad character. "=" for strict RFC compliance */ /* * These are the functions you'll usually want to call * They take string arguments and return either hex or base-64 encoded strings */ function hex_sha512(s) { return rstr2hex(rstr_sha512(str2rstr_utf8(s))); } function b64_sha512(s) { return rstr2b64(rstr_sha512(str2rstr_utf8(s))); } function any_sha512(s, e) { return rstr2any(rstr_sha512(str2rstr_utf8(s)), e);} function hex_hmac_sha512(k, d) { return rstr2hex(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); } function b64_hmac_sha512(k, d) { return rstr2b64(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d))); } function any_hmac_sha512(k, d, e) { return rstr2any(rstr_hmac_sha512(str2rstr_utf8(k), str2rstr_utf8(d)), e);} /* * Perform a simple self-test to see if the VM is working */ function sha512_vm_test() { return hex_sha512("abc").toLowerCase() == "ddaf35a193617abacc417349ae20413112e6fa4e89a97ea20a9eeee64b55d39a" + "2192992a274fc1a836ba3c23a3feebbd454d4423643ce80e2a9ac94fa54ca49f"; } /* * Calculate the SHA-512 of a raw string */ function rstr_sha512(s) { return binb2rstr(binb_sha512(rstr2binb(s), s.length * 8)); } /* * Calculate the HMAC-SHA-512 of a key and some data (raw strings) */ function rstr_hmac_sha512(key, data) { var bkey = rstr2binb(key); if(bkey.length > 32) bkey = binb_sha512(bkey, key.length * 8); var ipad = Array(32), opad = Array(32); for(var i = 0; i < 32; i++) { ipad[i] = bkey[i] ^ 0x36363636; opad[i] = bkey[i] ^ 0x5C5C5C5C; } var hash = binb_sha512(ipad.concat(rstr2binb(data)), 1024 + data.length * 8); return binb2rstr(binb_sha512(opad.concat(hash), 1024 + 512)); } /* * Convert a raw string to a hex string */ function rstr2hex(input) { try { hexcase } catch(e) { hexcase=0; } var hex_tab = hexcase ? "0123456789ABCDEF" : "0123456789abcdef"; var output = ""; var x; for(var i = 0; i < input.length; i++) { x = input.charCodeAt(i); output += hex_tab.charAt((x >>> 4) & 0x0F) + hex_tab.charAt( x & 0x0F); } return output; } /* * Convert a raw string to a base-64 string */ function rstr2b64(input) { try { b64pad } catch(e) { b64pad=''; } var tab = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; var output = ""; var len = input.length; for(var i = 0; i < len; i += 3) { var triplet = (input.charCodeAt(i) << 16) | (i + 1 < len ? input.charCodeAt(i+1) << 8 : 0) | (i + 2 < len ? input.charCodeAt(i+2) : 0); for(var j = 0; j < 4; j++) { if(i * 8 + j * 6 > input.length * 8) output += b64pad; else output += tab.charAt((triplet >>> 6*(3-j)) & 0x3F); } } return output; } /* * Convert a raw string to an arbitrary string encoding */ function rstr2any(input, encoding) { var divisor = encoding.length; var i, j, q, x, quotient; /* Convert to an array of 16-bit big-endian values, forming the dividend */ var dividend = Array(Math.ceil(input.length / 2)); for(i = 0; i < dividend.length; i++) { dividend[i] = (input.charCodeAt(i * 2) << 8) | input.charCodeAt(i * 2 + 1); } /* * Repeatedly perform a long division. The binary array forms the dividend, * the length of the encoding is the divisor. Once computed, the quotient * forms the dividend for the next step. All remainders are stored for later * use. */ var full_length = Math.ceil(input.length * 8 / (Math.log(encoding.length) / Math.log(2))); var remainders = Array(full_length); for(j = 0; j < full_length; j++) { quotient = Array(); x = 0; for(i = 0; i < dividend.length; i++) { x = (x << 16) + dividend[i]; q = Math.floor(x / divisor); x -= q * divisor; if(quotient.length > 0 || q > 0) quotient[quotient.length] = q; } remainders[j] = x; dividend = quotient; } /* Convert the remainders to the output string */ var output = ""; for(i = remainders.length - 1; i >= 0; i--) output += encoding.charAt(remainders[i]); return output; } /* * Encode a string as utf-8. * For efficiency, this assumes the input is valid utf-16. */ function str2rstr_utf8(input) { var output = ""; var i = -1; var x, y; while(++i < input.length) { /* Decode utf-16 surrogate pairs */ x = input.charCodeAt(i); y = i + 1 < input.length ? input.charCodeAt(i + 1) : 0; if(0xD800 <= x && x <= 0xDBFF && 0xDC00 <= y && y <= 0xDFFF) { x = 0x10000 + ((x & 0x03FF) << 10) + (y & 0x03FF); i++; } /* Encode output as utf-8 */ if(x <= 0x7F) output += String.fromCharCode(x); else if(x <= 0x7FF) output += String.fromCharCode(0xC0 | ((x >>> 6 ) & 0x1F), 0x80 | ( x & 0x3F)); else if(x <= 0xFFFF) output += String.fromCharCode(0xE0 | ((x >>> 12) & 0x0F), 0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F)); else if(x <= 0x1FFFFF) output += String.fromCharCode(0xF0 | ((x >>> 18) & 0x07), 0x80 | ((x >>> 12) & 0x3F), 0x80 | ((x >>> 6 ) & 0x3F), 0x80 | ( x & 0x3F)); } return output; } /* * Encode a string as utf-16 */ function str2rstr_utf16le(input) { var output = ""; for(var i = 0; i < input.length; i++) output += String.fromCharCode( input.charCodeAt(i) & 0xFF, (input.charCodeAt(i) >>> 8) & 0xFF); return output; } function str2rstr_utf16be(input) { var output = ""; for(var i = 0; i < input.length; i++) output += String.fromCharCode((input.charCodeAt(i) >>> 8) & 0xFF, input.charCodeAt(i) & 0xFF); return output; } /* * Convert a raw string to an array of big-endian words * Characters >255 have their high-byte silently ignored. */ function rstr2binb(input) { var output = Array(input.length >> 2); for(var i = 0; i < output.length; i++) output[i] = 0; for(var i = 0; i < input.length * 8; i += 8) output[i>>5] |= (input.charCodeAt(i / 8) & 0xFF) << (24 - i % 32); return output; } /* * Convert an array of big-endian words to a string */ function binb2rstr(input) { var output = ""; for(var i = 0; i < input.length * 32; i += 8) output += String.fromCharCode((input[i>>5] >>> (24 - i % 32)) & 0xFF); return output; } /* * Calculate the SHA-512 of an array of big-endian dwords, and a bit length */ var sha512_k; function binb_sha512(x, len) { if(sha512_k == undefined) { //SHA512 constants sha512_k = new Array( new int64(0x428a2f98, -685199838), new int64(0x71374491, 0x23ef65cd), new int64(-1245643825, -330482897), new int64(-373957723, -2121671748), new int64(0x3956c25b, -213338824), new int64(0x59f111f1, -1241133031), new int64(-1841331548, -1357295717), new int64(-1424204075, -630357736), new int64(-670586216, -1560083902), new int64(0x12835b01, 0x45706fbe), new int64(0x243185be, 0x4ee4b28c), new int64(0x550c7dc3, -704662302), new int64(0x72be5d74, -226784913), new int64(-2132889090, 0x3b1696b1), new int64(-1680079193, 0x25c71235), new int64(-1046744716, -815192428), new int64(-459576895, -1628353838), new int64(-272742522, 0x384f25e3), new int64(0xfc19dc6, -1953704523), new int64(0x240ca1cc, 0x77ac9c65), new int64(0x2de92c6f, 0x592b0275), new int64(0x4a7484aa, 0x6ea6e483), new int64(0x5cb0a9dc, -1119749164), new int64(0x76f988da, -2096016459), new int64(-1740746414, -295247957), new int64(-1473132947, 0x2db43210), new int64(-1341970488, -1728372417), new int64(-1084653625, -1091629340), new int64(-958395405, 0x3da88fc2), new int64(-710438585, -1828018395), new int64(0x6ca6351, -536640913), new int64(0x14292967, 0xa0e6e70), new int64(0x27b70a85, 0x46d22ffc), new int64(0x2e1b2138, 0x5c26c926), new int64(0x4d2c6dfc, 0x5ac42aed), new int64(0x53380d13, -1651133473), new int64(0x650a7354, -1951439906), new int64(0x766a0abb, 0x3c77b2a8), new int64(-2117940946, 0x47edaee6), new int64(-1838011259, 0x1482353b), new int64(-1564481375, 0x4cf10364), new int64(-1474664885, -1136513023), new int64(-1035236496, -789014639), new int64(-949202525, 0x654be30), new int64(-778901479, -688958952), new int64(-694614492, 0x5565a910), new int64(-200395387, 0x5771202a), new int64(0x106aa070, 0x32bbd1b8), new int64(0x19a4c116, -1194143544), new int64(0x1e376c08, 0x5141ab53), new int64(0x2748774c, -544281703), new int64(0x34b0bcb5, -509917016), new int64(0x391c0cb3, -976659869), new int64(0x4ed8aa4a, -482243893), new int64(0x5b9cca4f, 0x7763e373), new int64(0x682e6ff3, -692930397), new int64(0x748f82ee, 0x5defb2fc), new int64(0x78a5636f, 0x43172f60), new int64(-2067236844, -1578062990), new int64(-1933114872, 0x1a6439ec), new int64(-1866530822, 0x23631e28), new int64(-1538233109, -561857047), new int64(-1090935817, -1295615723), new int64(-965641998, -479046869), new int64(-903397682, -366583396), new int64(-779700025, 0x21c0c207), new int64(-354779690, -840897762), new int64(-176337025, -294727304), new int64(0x6f067aa, 0x72176fba), new int64(0xa637dc5, -1563912026), new int64(0x113f9804, -1090974290), new int64(0x1b710b35, 0x131c471b), new int64(0x28db77f5, 0x23047d84), new int64(0x32caab7b, 0x40c72493), new int64(0x3c9ebe0a, 0x15c9bebc), new int64(0x431d67c4, -1676669620), new int64(0x4cc5d4be, -885112138), new int64(0x597f299c, -60457430), new int64(0x5fcb6fab, 0x3ad6faec), new int64(0x6c44198c, 0x4a475817)); } //Initial hash values var H = new Array( new int64(0x6a09e667, -205731576), new int64(-1150833019, -2067093701), new int64(0x3c6ef372, -23791573), new int64(-1521486534, 0x5f1d36f1), new int64(0x510e527f, -1377402159), new int64(-1694144372, 0x2b3e6c1f), new int64(0x1f83d9ab, -79577749), new int64(0x5be0cd19, 0x137e2179)); var T1 = new int64(0, 0), T2 = new int64(0, 0), a = new int64(0,0), b = new int64(0,0), c = new int64(0,0), d = new int64(0,0), e = new int64(0,0), f = new int64(0,0), g = new int64(0,0), h = new int64(0,0), //Temporary variables not specified by the document s0 = new int64(0, 0), s1 = new int64(0, 0), Ch = new int64(0, 0), Maj = new int64(0, 0), r1 = new int64(0, 0), r2 = new int64(0, 0), r3 = new int64(0, 0); var j, i; var W = new Array(80); for(i=0; i<80; i++) W[i] = new int64(0, 0); // append padding to the source string. The format is described in the FIPS. x[len >> 5] |= 0x80 << (24 - (len & 0x1f)); x[((len + 128 >> 10)<< 5) + 31] = len; for(i = 0; i<x.length; i+=32) //32 dwords is the block size { int64copy(a, H[0]); int64copy(b, H[1]); int64copy(c, H[2]); int64copy(d, H[3]); int64copy(e, H[4]); int64copy(f, H[5]); int64copy(g, H[6]); int64copy(h, H[7]); for(j=0; j<16; j++) { W[j].h = x[i + 2*j]; W[j].l = x[i + 2*j + 1]; } for(j=16; j<80; j++) { //sigma1 int64rrot(r1, W[j-2], 19); int64revrrot(r2, W[j-2], 29); int64shr(r3, W[j-2], 6); s1.l = r1.l ^ r2.l ^ r3.l; s1.h = r1.h ^ r2.h ^ r3.h; //sigma0 int64rrot(r1, W[j-15], 1); int64rrot(r2, W[j-15], 8); int64shr(r3, W[j-15], 7); s0.l = r1.l ^ r2.l ^ r3.l; s0.h = r1.h ^ r2.h ^ r3.h; int64add4(W[j], s1, W[j-7], s0, W[j-16]); } for(j = 0; j < 80; j++) { //Ch Ch.l = (e.l & f.l) ^ (~e.l & g.l); Ch.h = (e.h & f.h) ^ (~e.h & g.h); //Sigma1 int64rrot(r1, e, 14); int64rrot(r2, e, 18); int64revrrot(r3, e, 9); s1.l = r1.l ^ r2.l ^ r3.l; s1.h = r1.h ^ r2.h ^ r3.h; //Sigma0 int64rrot(r1, a, 28); int64revrrot(r2, a, 2); int64revrrot(r3, a, 7); s0.l = r1.l ^ r2.l ^ r3.l; s0.h = r1.h ^ r2.h ^ r3.h; //Maj Maj.l = (a.l & b.l) ^ (a.l & c.l) ^ (b.l & c.l); Maj.h = (a.h & b.h) ^ (a.h & c.h) ^ (b.h & c.h); int64add5(T1, h, s1, Ch, sha512_k[j], W[j]); int64add(T2, s0, Maj); int64copy(h, g); int64copy(g, f); int64copy(f, e); int64add(e, d, T1); int64copy(d, c); int64copy(c, b); int64copy(b, a); int64add(a, T1, T2); } int64add(H[0], H[0], a); int64add(H[1], H[1], b); int64add(H[2], H[2], c); int64add(H[3], H[3], d); int64add(H[4], H[4], e); int64add(H[5], H[5], f); int64add(H[6], H[6], g); int64add(H[7], H[7], h); } //represent the hash as an array of 32-bit dwords var hash = new Array(16); for(i=0; i<8; i++) { hash[2*i] = H[i].h; hash[2*i + 1] = H[i].l; } return hash; } //A constructor for 64-bit numbers function int64(h, l) { this.h = h; this.l = l; //this.toString = int64toString; } //Copies src into dst, assuming both are 64-bit numbers function int64copy(dst, src) { dst.h = src.h; dst.l = src.l; } //Right-rotates a 64-bit number by shift //Won't handle cases of shift>=32 //The function revrrot() is for that function int64rrot(dst, x, shift) { dst.l = (x.l >>> shift) | (x.h << (32-shift)); dst.h = (x.h >>> shift) | (x.l << (32-shift)); } //Reverses the dwords of the source and then rotates right by shift. //This is equivalent to rotation by 32+shift function int64revrrot(dst, x, shift) { dst.l = (x.h >>> shift) | (x.l << (32-shift)); dst.h = (x.l >>> shift) | (x.h << (32-shift)); } //Bitwise-shifts right a 64-bit number by shift //Won't handle shift>=32, but it's never needed in SHA512 function int64shr(dst, x, shift) { dst.l = (x.l >>> shift) | (x.h << (32-shift)); dst.h = (x.h >>> shift); } //Adds two 64-bit numbers //Like the original implementation, does not rely on 32-bit operations function int64add(dst, x, y) { var w0 = (x.l & 0xffff) + (y.l & 0xffff); var w1 = (x.l >>> 16) + (y.l >>> 16) + (w0 >>> 16); var w2 = (x.h & 0xffff) + (y.h & 0xffff) + (w1 >>> 16); var w3 = (x.h >>> 16) + (y.h >>> 16) + (w2 >>> 16); dst.l = (w0 & 0xffff) | (w1 << 16); dst.h = (w2 & 0xffff) | (w3 << 16); } //Same, except with 4 addends. Works faster than adding them one by one. function int64add4(dst, a, b, c, d) { var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff); var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (w0 >>> 16); var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (w1 >>> 16); var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (w2 >>> 16); dst.l = (w0 & 0xffff) | (w1 << 16); dst.h = (w2 & 0xffff) | (w3 << 16); } //Same, except with 5 addends function int64add5(dst, a, b, c, d, e) { var w0 = (a.l & 0xffff) + (b.l & 0xffff) + (c.l & 0xffff) + (d.l & 0xffff) + (e.l & 0xffff); var w1 = (a.l >>> 16) + (b.l >>> 16) + (c.l >>> 16) + (d.l >>> 16) + (e.l >>> 16) + (w0 >>> 16); var w2 = (a.h & 0xffff) + (b.h & 0xffff) + (c.h & 0xffff) + (d.h & 0xffff) + (e.h & 0xffff) + (w1 >>> 16); var w3 = (a.h >>> 16) + (b.h >>> 16) + (c.h >>> 16) + (d.h >>> 16) + (e.h >>> 16) + (w2 >>> 16); dst.l = (w0 & 0xffff) | (w1 << 16); dst.h = (w2 & 0xffff) | (w3 << 16); }
以上就是本文的全部内容,希望对大家有所帮助,希望大家继续关注小牛知识库的最新内容。
本文向大家介绍JavaScript SHA-256加密算法详细代码,包括了JavaScript SHA-256加密算法详细代码的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家分享了JavaScript SHA-256加密算法,供大家参考,具体内容如下 以上就是本文的全部内容,希望对大家有所帮助,希望大家继续关注呐喊教程的最新内容。
本文向大家介绍JavaScript SHA1加密算法实现详细代码,包括了JavaScript SHA1加密算法实现详细代码的使用技巧和注意事项,需要的朋友参考一下 本文实例为大家介绍了JavaScript SHA1加密算法吗,供大家参考,具体内容如下 以上就是本文的全部内容,希望对大家有所帮助,希望大家继续关注呐喊教程的最新内容。
本文向大家介绍c++代码实现tea加密算法的实例详解,包括了c++代码实现tea加密算法的实例详解的使用技巧和注意事项,需要的朋友参考一下 通过c++来实现tea加密算法,最终编译成so文件,以JNI的方式提供给客户端调用,主要需要解决以下三个问题: 实现tea算法,这都有开源的代码可以实现; 解决padding问题; 密钥做一个混淆,防止编译生成的库文件方便的被逆向拿到; 对于tea的加密算法,
MD5 加密算法 类型:MD5 可配置属性:无 AES 加密算法 类型:AES 可配置属性: 名称 数据类型 说明 aes-key-value String AES 使用的 KEY RC4 加密算法 类型:RC4 可配置属性: 名称 数据类型 说明 rc4-key-value String RC4 使用的 KEY
本文向大家介绍php用户密码加密算法分析【Discuz加密算法】,包括了php用户密码加密算法分析【Discuz加密算法】的使用技巧和注意事项,需要的朋友参考一下 本文实例讲述了php用户密码加密算法。分享给大家供大家参考,具体如下: 今天在拿Discuz进行二次开发时需要在代码里验证Discuz的用户名密码,结果不小心掉进了坑里,因为Discuz的论坛有两张表来存储用户数据,一张在Discuz的
本文向大家介绍java 对称加密算法实现详解,包括了java 对称加密算法实现详解的使用技巧和注意事项,需要的朋友参考一下 前言 对于信息的加密方式多种多样,之前为大家介绍了一种自己设计的加密方式,有兴趣的朋友可以欣赏一下,欢迎给予指点。今天为大家介绍一下对称加密方式,所谓对称加密指的是加密和解密方式呈对称格式,即解密是加密的逆过程,下面我们就看一下:DES、3DES、AES、PBE这四种方式,他