当前位置: 首页 > 编程笔记 >

python实现连连看辅助之图像识别延伸

易雅畅
2023-03-14
本文向大家介绍python实现连连看辅助之图像识别延伸,包括了python实现连连看辅助之图像识别延伸的使用技巧和注意事项,需要的朋友参考一下

python实现连连看辅助–图像识别延伸(百度AI),供大家参考,具体内容如下

百度AI平台提供图片相似检索API接口,并有详细的API文档说明,可以更好的实现图片识别。

from aip import AipImageSearch

""" 你的 APPID AK SK """
APP_ID = '***'
API_KEY = '***'
SECRET_KEY = '***'

client = AipImageSearch(APP_ID, API_KEY, SECRET_KEY)
with open("{}-{}.jpg".format(1, 1), "rb") as f:
 im = f.read()
# im = self.image_list[row][col]
# 将图片与百度云自建相似图库中的图片对比相似度
res = client.similarSearch(im)
for r in res["result"]:
 if r["score"] > 0.9:
  print(r["brief"])

百度AI平台提供非常多的API接口,值得研究。

代码

import win32gui
import time
from PIL import ImageGrab , Image
import numpy as np
from pymouse import PyMouse
from aip import AipImageSearch


class GameAuxiliaries(object):
 def __init__(self):
  self.wdname = r'宠物连连看经典版2,宠物连连看经典版2小游戏,4399小游戏 www.4399.com - Google Chrome'
  # self.wdname = r'main.swf - PotPlayer'
  self.image_list = {}
  self.m = PyMouse()
  self.APP_ID = '15633871'
  self.API_KEY = 'LNMuXHmULcZM0PRKX8ZT4OnB'
  self.SECRET_KEY = 'IwvyYxeDLIR5XvEmnX3ENWoVzMITkdBL'

  self.client = AipImageSearch(self.APP_ID, self.API_KEY, self.SECRET_KEY)


 def find_game_wd(self,wdname):
  # 取得窗口句柄
  hdwd = win32gui.FindWindow(0,wdname)
  # 设置为最前显示
  win32gui.SetForegroundWindow(hdwd)
  time.sleep(1)

 def get_img(self):
  image = ImageGrab.grab((417, 289, 884, 600))
  # image = ImageGrab.grab((417, 257, 885, 569))
  image.save('1.jpg','JPEG')
  for x in range(1,9):
   self.image_list[x] = {}
   for y in range(1,13):
    top = (x - 1) * 38 + (x-2)
    left =(y - 1) * 38 +(y-2)
    right = y * 38 + (y-1)
    bottom = x * 38 +(x -1)
    if top < 0:
     top = 0
    if left < 0 :
     left = 0
    im_temp = image.crop((left,top,right,bottom))
    im = im_temp.crop((1,1,37,37))
    im.save('{}-{}.jpg'.format(x,y))
    self.image_list[x][y]=im

 def compare_img_baiduapi(self,im):
  '''将图片与百度云自建相似图库中的图片对比相似度'''
  pass

 # 判断两个图片是否相同。汉明距离,平均哈希
 def compare_img(self,im1,im2):
  img1 = im1.resize((20, 20), Image.ANTIALIAS).convert('L')
  img2 = im2.resize((20, 20), Image.ANTIALIAS).convert('L')
  pi1 = list(img1.getdata())
  pi2 = list(img2.getdata())
  avg1 = sum(pi1) / len(pi1)
  avg2 = sum(pi2) / len(pi2)
  hash1 = "".join(map(lambda p: "1" if p > avg1 else "0", pi1))
  hash2 = "".join(map(lambda p: "1" if p > avg2 else "0", pi2))
  match = 0
  for i in range(len(hash1)):
   if hash1[i] != hash2[i]:
    match += 1
  # match = sum(map(operator.ne, hash1, hash2))
  # match 值越小,相似度越高
  return match


 # 将图片矩阵转换成数字矩阵

 def create_array(self):
  array = np.zeros((10,14),dtype=np.int32)
  img_type_list = []
  for row in range(1,len(self.image_list)+1):
   for col in range(1,len(self.image_list[1])+1):
    # im = Image.open('{}-{}.jpg'.format(row,col))
    with open("{}-{}.jpg".format(row,col), "rb") as f:
     im = f.read()
    # im = self.image_list[row][col]
    # 将图片与百度云自建相似图库中的图片对比相似度
    res = self.client.similarSearch(im)
    while len(res) == 2:

     res = self.client.similarSearch(im)
     print(res)
     print(row, col)
     time.sleep(0.2)
    print(row,col)
    for r in res["result"]:
     if r["score"] > 0.9:
      array[row][col]=r["brief"]

  return array

 def row_zero(self,x1,y1,x2,y2,array):
  '''相同的图片中间图标全为空'''
  if x1 == x2:
   min_y = min(y1,y2)
   max_y = max(y1,y2)
   if max_y - min_y == 1:
    return True
   for y in range(min_y+1,max_y):
    if array[x1][y] != 0 :
     return False
   return True
  else:
   return False

 def col_zero(self,x1,y1,x2,y2,array):
  '''相同的图片同列'''
  if y1 == y2:
   min_x = min(x1,x2)
   max_x = max(x1,x2)
   if max_x - min_x == 1:
    return True
   for x in range(min_x+1,max_x):
    if array[x][y1] != 0 :
     return False
   return True
  else:
   return False

 def two_line(self,x1,y1,x2,y2,array):
  '''两条线相连,转弯一次'''
  for row in range(1,9):
   for col in range(1,13):
    if row == x1 and col == y2 and array[row][col]==0 and self.row_zero(x1,y1,row,col,array) and self.col_zero(x2,y2,row,col,array):
     return True
    if row == x2 and col == y1 and array[row][col]==0 and self.row_zero(x2,y2,row,col,array) and self.col_zero(x1,y1,row,col,array):
     return True
  return False

 def three_line(self,x1,y1,x2,y2,array):
  '''三条线相连,转弯两次'''
  for row1 in range(10):
   for col1 in range(14):
    for row2 in range(10):
     for col2 in range(14):
      if array[row1][col1] == array[row2][col2] == 0 and self.row_zero(x1,y1,row1,col1,array) and self.row_zero(x2,y2,row2,col2,array) and self.col_zero(row1,col1,row2,col2,array):
       return True
      if array[row1][col1] == array[row2][col2] == 0 and self.col_zero(x1,y1,row1,col1,array) and self.col_zero(x2,y2,row2,col2,array) and self.row_zero(row1,col1,row2,col2,array):
       return True
      if array[row1][col1] == array[row2][col2] == 0 and self.row_zero(x2,y2,row1,col1,array) and self.row_zero(x1,y1,row2,col2,array) and self.col_zero(row1,col1,row2,col2,array):
       return True
      if array[row1][col1] == array[row2][col2] == 0 and self.col_zero(x2,y2,row1,col1,array) and self.col_zero(x1,y1,row2,col2,array) and self.row_zero(row1,col1,row2,col2,array):
       return True
  return False


 def mouse_click(self,x,y):

  top = (x - 1) * 38 + (x - 2)
  left = (y - 1) * 38 + (y - 2)
  right = y * 38 + (y - 1)
  bottom = x * 38 + (x - 1)
  if top < 0:
   top = 0
  if left < 0:
   left = 0

  self.m.press(int(417+(left+right)/2) ,int(289+(top+bottom)/2) )

 def find_same_img(self,array):

  for x1 in range(1,9):
   for y1 in range(1,13):
    if array[x1][y1] == 0:
     continue
    for x2 in range(1,9):
     for y2 in range(1,13):
      if x1==x2 and y1 == y2:
       continue
      if array[x2][y2] == 0 :
       continue
      if array[x1][y1] != array[x2][y2] :
       continue
      if array[x1][y1] ==array[x2][y2] and (self.row_zero(x1,y1,x2,y2,array) or self.col_zero(x1,y1,x2,y2,array) or self.two_line(x1,y1,x2,y2,array) or self.three_line(x1,y1,x2,y2,array)):
       print("可消除!x{}y{} 和 x{}y{}".format(x1,y1,x2,y2))
       self.mouse_click(x1,y1)
       time.sleep(0.1)
       self.mouse_click(x2,y2)
       time.sleep(0.1)
       array[x1][y1]=array[x2][y2]=0



 def run(self):
  #找到游戏运行窗口
  self.find_game_wd(self.wdname)
  # 截图,切割成小图标
  self.get_img()
  print("切割完成")
  # 将图片矩阵转换成数字矩阵
  array = self.create_array()
  print(array)
  # 遍历矩阵,找到可消除项,点击消除
  for i in range(10):
   self.find_same_img(array)

  print(array)


if __name__ == '__main__':
 ga = GameAuxiliaries()
 ga.run()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持小牛知识库。

 类似资料:
  • 本文向大家介绍python实现连连看辅助(图像识别),包括了python实现连连看辅助(图像识别)的使用技巧和注意事项,需要的朋友参考一下 个人兴趣,用python实现连连看的辅助程序,总结实现过程及知识点。 总体思路 1、获取连连看程序的窗口并前置 2、游戏界面截图,将每个一小图标切图,并形成由小图标组成的二维列表 3、对图片的二维列表遍历,将二维列表转换成由数字组成的二维数组,图片相同的数值相

  • 本文向大家介绍python实现连连看游戏,包括了python实现连连看游戏的使用技巧和注意事项,需要的朋友参考一下 编程一直是在课余时间,放假时间自学,到现在为止也有半年了。 这是我自己用python实现的连连看,也是第一个完成的游戏,虽然极其简陋。 思路呢,一开始是想要从一个点出发开始寻路,遇到数字就换一条路,直到找到第二个点,但是这样就得做到不断寻路且不能和重复之前走过的路径,这就有点让我犯难

  • 本文向大家介绍Python图像识别+KNN求解数独的实现,包括了Python图像识别+KNN求解数独的实现的使用技巧和注意事项,需要的朋友参考一下 Python-opencv+KNN求解数独 最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s。 整体思路大概就是识别出图中数字生成list,然后求解。 输入输出demo 数独采用的是微软自带的Microsoft sudoku软

  • 本文向大家介绍微信跳一跳python辅助软件思路及图像识别源码解析,包括了微信跳一跳python辅助软件思路及图像识别源码解析的使用技巧和注意事项,需要的朋友参考一下 本文将梳理github上最火的wechat_jump_game的实现思路,并解析其图像处理部分源码 首先废话少说先看效果 核心思想 获取棋子到下一个方块的中心点的距离 计算触摸屏幕的时间 点击屏幕 重要方法 计算棋子到下一个方块中心

  • 本文向大家介绍python 实现性别识别,包括了python 实现性别识别的使用技巧和注意事项,需要的朋友参考一下 使用keras实现性别识别,模型数据使用的是oarriaga/face_classification的模型 实现效果 准备工作 在开始之前先要安装keras和tensorflow 安装keras使用命令:pip3 install keras 安装tensorflow使用命令:pip3

  • 问题内容: 我有这样的df: 如果两个或两个以上连续出现in和a如果没有连续出现,我想在新列中返回a 。因此,在新列中,每一行都将基于该列中满足的此条件获得一个。我想要的输出将是: 我想我可能需要使用,但是我一直在阅读,还没有发现我需要的东西。我希望能够使用此方法来计数任意数量的连续出现,而不仅仅是2。例如,有时我需要计算10次连续出现,在这里的示例中我只使用2次。 问题答案: 你可以: 要得到: